
 

Intrinsic Physical Unclonable Functions in 
Field Programmable Gate Arrays1 

Jorge Guajardo, Sandeep S. Kumar, Klaus Kursawe,  
Geert-Jan Schrijen, and Pim Tuyls 

Information and System Security Group  
Philips Research Europe, Eindhoven, Netherland 

Email:  {jorge.guajardo | sandeep.kumar | klaus.kursawe | geert.jan.schrijen | 
pim.tuyls}@philips.com 

Abstract 
In today’s globalized economy, it has become standard business practice to include third party 
Intellectual Property (IP) into products.  However, licensing IP to third parties forces IP vendors to 
ensure that they can generate revenue from their internally developed IP blocks.  This is only 
guaranteed if designs are properly protected against theft, cloning, and grey market overproduction.  
In this paper, we describe a solution for the IP protection problem on Field Programmable Gate 
Arrays (FPGAs) based on the use of Physical Unclonable Functions (PUFs).  Our solution includes 
optimizations at the protocol level, making the resulting protocols more efficient than previously 
proposed ones.  In addition, we show how SRAM memory blocks present in current FPGAs can be 
used as a PUF.  This leads to a solution which allows unique identification of FPGAs without 
requiring significant additional hardware resources, and to ensure code can only run on authorized 
platforms.  

1 Introduction 
Begining in the 1980s, there has been a continuos move towards outsourcing of non-key 
activities within companies.  This is particularly true in the semiconductor industry where the 
costs of building a state-of-the-art high-volume CMOS digital logic fab range anywhere from 
1 to 2 billion US dollars [Brun99], thus making it not cost-effective for single companies to 
build such a fab.  This has led to the emergence of foundries, which can invest large amounts 
of capital and service several customers at one time.  Parallel to this trend, IP developers have 
also recognized that IP developed in-house can be a source of additional revenue if licensed to 
external parties.  The previous developments have led many companies to disclose internally 
developed IP to external parties and as a consequence to face the counterfeiting challenge. It is 
estimated that as much as 10% of all high tech products sold globally are counterfeit 
[KPMG05]. This translates into a conservative estimate of US$100 billion of global IT 
industry revenue lost due to counterfeiting [KPMG05]. The same paper advises to employ 
anti-counterfeiting technologies to mitigate the effects of counterfeiters. In this paper, we deal 
explicitly with one such technology and its implementation on Field Programmable Gate 
Arrays (FPGAs). 

 

                                                 
1 Appears in Information Security Solutions Europe – ISSE 2007, September 25-27, 2007, Warsaw, Poland. 



2 Intrinsic PUFs in FPGAs 

FPGAs are devices containing programmable logic blocks and programmable interconnect.  
The programmable blocks give an FPGA the ability to instantiate virtually any logic function 
whereas the programmable interconnect allows connecting different logic blocks in the FPGA.  
Since the mid 90s, FPGAs have steadily increased their logic resources. This has lead to an 
increasing number of implementations and products using FPGAs.  Most FPGAs in use today 
are volatile SRAM-based devices.  This means that upon power-up, a configuration file or 
bitstream, stored in external non-volatile memory, needs to be loaded onto the FPGA 
providing it with the desired functionality.  This flexibility is also the reason why FPGA 
designs can be easily copied.  An attacker can easily tap the bus between non-volatile memory 
and FPGA on an authentic board, obtain the configuration file, copy it onto a different board, 
and obtain exactly the same functionality as in the original board.  Such an attack is called a 
cloning attack and it results in counterfeited products. 

 

From a security perspective, the counterfeiting threat can be best explained as an 
authentication problem.  In general, we can identify the following security services required 
by different parties in the overall IP protection chain: 

S1. Hardware IP authentication: a hardware design runs only on a specific hardware 
device, hence it can not be cloned.  

S2. Hardware platform authentication: the hardware platform (FPGA) allows only 
authentic designs to execute. 

S3. Complete design confidentiality: the intended design recipient (this could be the 
system integrator, the end user, etc.) has only access to the design as a black box 
(input/output behavior). No other party (in addition to the design developer) knows 
anything about the hardware IP. 

S4. Secure hardware IP updating: given that there is already an authentic design running 
on the FPGA, the IP provider would like to update it and at a minimum keep all the 
security guarantees that the previous design kept. 

S5. Design traceability: given an IP block, the designer can trace back who the intended 
recipient of the design was. 

S6. User privacy: A design should not be linkable to the identity of the end-user 

 

Using bitstream encryption with a key that is specific to a particular FPGA would provide the 
means to solve most of the problems. This observation is due to Kean [Kean02], who also 
proposes an associated protocol to support IP protection.  The protocol is based on bitstream 
encryption using a key stored in non-volatile memory on the FPGA. By eavesdropping the bus 
between the external memory and the FPGA the attacker can only obtain an encrypted version 
of the design. As long as the secret key is securely stored on the FPGA, the attacker can not 
perform a successful cloning attack. One general problem with this solution is that there is no 
non-volatile memory on SRAM FPGAs to store a long-term key. In order to solve this 
problem two main solutions have been proposed: (i) some non-volatile memory such as flash 
is added to the FPGA or (ii) the FPGA stores a long-term key in a few hundred bits of 
dedicated RAM backed-up by an externally connected battery. Both solutions come with a 
price penalty and are therefore not very attractive. The second solution has the additional 
disadvantage that the battery has only a limited life time and that batteries can get damaged 
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which shortens further their life-time. Both effects have as a consequence that the key and the 
design are lost after some time, rendering the overall IP block non-functional.  

 

In this paper, we will focus on providing services S1, S2 and S3.  In particular, we propose 
new and improved protocols for IP protection on FPGAs.  We show that the protocols of 
[SiSc06] (which deals with S1 and S2), can be considerably simplified.  We describe simplifi-
cations in terms of communication complexity, assumptions, and number of encryptions per-
formed. In addition, our protocols provide privacy from the TTP.  In other words, previous 
protocols allow the TTP to have access to the IP block exchanged between the IPP and the 
SYS.  In practice, this might not be desirable from the IPP's point of view.  The cost of TTP-
privacy is a public-key (PK) based operation.  The public-key operation does not affect the 
resource requirements of the FPGA implementation when compared to the work in [SiSc06].  
This is achieved by performing the PK operation during the online phase of the protocol. 
Finally, we describe the implementation of an actual Physical Unclonable Function (PUF) on 
an FPGA which is intrinsic to the FPGA.  Notice that this means that the PUF is already 
present on the FPGA and thus, it requires no modifications to the actual hardware.  The actual 
implementation and analysis of this FPGA intrinsic PUF is described in detail in [GKST07]. 

 

2 Physical Unclonable Functions, Fuzzy Extractors 
and Helper Data Algorithms 

Physical Unclonable Functions (PUFs), also referred to as Physically Random Functions, 
consist of inherently unclonable physical systems. PUFs are functions embedded in a separate 
physical structure or extracted from physical properties inherently present in a hardware 
device (intrinsic PUFs) that map challenges to responses (identifiers).  They inherit their 
unclonability from the fact that they consist of many random components that are present in 
the manufacturing process and can not be controlled.  When a stimulus is applied to the 
system, it reacts with a response.  Such a pair of a stimulus C and a response R is called a 
challenge-response pair (CRP).  In particular, a PUF is considered as a function that maps 
challenges to responses.  In general, PUFs have three main properties: 

• Easy to evaluate.  It is easy and cheap to challenge the PUF and measure the response.  
This implies that the whole evaluation procedure can be carried out with minimal time de-
lay and minimal cost. 

• Hard to characterize.  An attacker, who is in possession of the device containing the 
PUF can only obtain a negligible amount of knowledge about the PUF. Hence, he is un-
able to manufacture a device with similar properties. In other words, a realistic attacker 
(one who does not have infinite resources) cannot clone the PUF. 

• Tamper evidence.  Under a physical attack the PUF gets damaged to such an extent that 
its challenge-response behaviour changes substantially and the extracted identifiers are 
destroyed.  In addition to the properties previously described, PUFs can be inseparably 
bound to the device.  This means that any attempt to remove the PUF from the device 
leads to the destruction of the PUF (and/or the device).  Hence, an attack aiming at remov-
ing the PUF will destroy the data being extracted from it. 



4 Intrinsic PUFs in FPGAs 

PUFS can be used to generate unclonable identifiers and to generate and to securely store 
cryptographic keys in a device.  The following assumptions are made on the PUF: 

 

1. It is assumed that a response Ri (to a challenge Ci) gives only a negligible amount of in-
formation on another response Rj (to a different challenge Cj) with i ≠  j.  

2. Without having the corresponding PUF at hand, it is impossible to come up with the re-
sponse Ri corresponding to a challenge Ci, except with negligible probability. 

3. Extracting the data from the PUF is only possible by reading it in the “proper” way, i.e.,  
when an attacker tries to investigate the PUF to obtain detailed information of its structure, 
the PUF is destroyed.  In other words, the PUF's challenge-response behavior is changed 
substantially. 

 

We distinguish between two different situations. First, we assume that there is a large number 
of challenge response pairs Ci,Ri, i=1…, N available for the PUF; i.e. a strong PUF has so 
many challenge-response pairs such that an attack (performed during a limited amount of 
time) based on exhaustively measuring all responses only has a negligible probability of suc-
cess. We refer to this case as strong PUFs. If the number of different CRPs N is rather small, 
we refer to it as a weak PUF; in the extreme case, a weak PUF may only have one challenge.  
Due to noise in the measurement process, the PUF responses may contain some errors, which 
need to be compensated and corrected. As PUF responses are noisy (as explained above) and 
may show statistical correlations, a Fuzzy Extractor or Helper Data Algorithm [LiTu03, 
DoRS04] is needed to extract usable data from the PUF responses. Informally, we need to im-
plement two basic primitives: (i) Information Reconciliation or error correction and (ii) Pri-
vacy Amplification or randomness extraction. In order to implement those two primitives, 
helper data is generated during the enrollment phase, which happens once in the lifetime of 
the device in a trusted environment. Later, during the reconstruction phase, the data is recon-
structed based on a noisy measurement and the helper data. 

3 PUF Constructions 
This section describes some known PUF constructions including:  optical PUFs [PRTG02], 
silicon PUFs [GCDD02a] and coating PUFs [TSS+06].  Although coating PUFs are very 
cheap to produce they still need a small additional manufacturing step.  For the FPGA protec-
tion, we use an intrinsic PUF (IPUF) [GKST07], i.e., a PUF that is inherently present in the 
device due to its manufacturing process and no additional hardware has to be added for em-
bedding the PUF. 

3.1 Optical PUFs and Silicon PUFs. 
Pappu et al. [PRTG02] introduce the idea of a Physical One-Way Function.  They use a 
bubble-filled transparent epoxy wafer and shine a laser beam through it leading to a response 
interference pattern. This kind of optical PUF is hard to use in the field because of the 
difficulty to have a tamper resistant measuring device. Gassend et al. introduce Silicon 
Physical Random Functions (SPUF) [GCDD02a] which use manufacturing process variations 
in ICs with identical masks to uniquely characterize each chip. The statistical delay variations 
of transistors and wires in the IC were used to create a parameterized self oscillating circuit to 
measure frequency which characterizes each IC. Silicon PUFs are very sensitive to 
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environmental variations like temperature and voltage. Lim et al. [LLG+05] introduce arbiter-
based PUFs which use a differential structure and an arbiter to distinguish the difference in 
the delay between the paths. Gassend et al. [GCDD02b] also define a Controlled Physical 
Random Function (CPUF) which can only be accessed via an algorithm that is physically 
bound to the randomness source in an inseparable way.  This control algorithm can be used to 
measure the PUF but also to protect a "weak" PUF from external attacks.  Recently, Su et al. 
[SuHO07] present a custom built circuit array of cross-coupled NOR gate latches to uniquely 
identify an IC. Here, small transistor threshold voltage Vt differences that are caused due to 
process variations lead to a mismatch in the latch to store a 1 or a 0. 

3.2 Coating PUFs 
In [TSS+06], Tuyls et al. present coating PUFs in which an IC is covered with a protective 
matrix coating, doped with random dielectric particles at random locations. The IC also has a 
top metal layer with an array of sensors to measure the local capacitance of the coating matrix 
that is used to characterize the IC. The measurement circuit is integrated in the IC, making it a 
controlled PUF.  It is shown in [TSS+06] that it is possible to extract up to three key bits from 
each sensor in the IC leading to approximately 600 bits per mm2.  A key observation in 
[TSS+06] is that the coating can be used to store keys (rather than as a CRP repository as in 
previous works) and that these keys are not stored in memory.  Rather, whenever an 
application requires the key, the key is generated on the fly.  This makes it much more 
difficult for an attacker to compromise key material in security applications.  Finally, Tuyls et 
al. [TSS+06] show that active attacks on the coating can be easily detected, thus, making it a 
good countermeasure against probing attacks.  

3.3 FPGA Intrinsic PUFs and SRAM Memories 
The disadvantage of most of the previous approaches is the use of custom built circuits or the 
modification of the IC manufacturing process to generate a reliable PUF. In [GKST07], the 
authors approach the problem by identifying an Intrinsic PUF which is defined as a PUF al-
ready present in the device and that requires no modification to satisfy the security goals. We 
describe next how SRAM memories, which are widely available in almost every computing 
device including modern FPGAs, can be used as an Intrinsic PUF. 

 

3.3.1 Basic Principles of SRAM PUFs 
A CMOS SRAM cell is a six transistor device formed of two cross-coupled inverters and two 
access transistors connecting to the data bit-lines based on the word-line signal.  The transis-
tors forming the cross-coupled inverters are constructed particularly weak to allow driving 
them easily to 0 or 1 during a write process. Hence, these transistors are extremely sensitive to 
atomic level intrinsic fluctuations which are outside the control of the manufacturing process 
and independent of the transistor location on the chip (see [ChRA04]). In practice, SRAM 
cells are constructed with proper width/length ratios between the different transistors such that 
these fluctuations do not affect the reading and writing process under normal operation. 
However, during power-up, the cross-coupled inverters of a SRAM cell are not subject to any 
externally exerted signal. Therefore, any minor voltage difference that shows up on the tran-
sistors due to intrinsic parameter variations will tend toward a 0 or a 1 caused by the amplify-
ing effect of each inverter acting on the output of the other inverter. Hence, with high prob-
ability, an SRAM cell will start in the same state upon power-up.  On the other hand, different 
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SRAM cells will behave randomly and independently from each other.  In [GKST07], the 
authors consider as a challenge a range of memory locations within a SRAM memory block.  
The response are the start-up values at these locations.  Notice also that SRAM-based PUFs 
produce a binary string as result of a measurement, in contrast to other PUFs, which have to 
go through a quantization process before obtaining a bit string from the measurement.  This 
results in a reduction in the complexity of the measurement circuit. For our proof of concept, 
we use FPGAs which include dedicated RAM blocks.  In order to be useful as a PUF, SRAM 
startup values should have good statistical properties and be robust over time, to temperature 
variations, and have good identification performance.  These properties were studied in 
[GKST07].  Here we summarize their findings.  Regarding robustness, the Hamming distance 
between bit strings from repeated measurements of the same SRAM block (intra-class 
measurements) should be small enough, such that errors between enrollment and 
authentication measurements can be corrected by an error correcting code admitting efficient 
decoding.  In [GKST07], the authors compared the Hamming distance between a first 
measurement and repeated measurements of the same SRAM block carried over 
approximately two weeks.  The experiment was done with four different RAM blocks, located 
in two different FPGAs. The measurements showed that less than 4% of the startup bit values 
change over time.  Similarly, preliminary data indicates that measurements at temperatures 
ranging from -20°C to 80°C result in bit strings with maximum fractional Hamming distances 
of 12% when compared to a reference measurement performed at 20°C.  Finally, we notice 
that intra-class Hamming distances of  the SRAM startup values should remain small, even 
when other data has been written into the memory before the FPGA was restarted. In 
particular, it is important that the startup values are unaffected by aging and the use of the 
SRAM blocks to store data. The tests in [GKST07] indicate that storing zeros or ones into the 
memory has very little influence in the SRAM start-up values. The fractional Hamming dis-
tance between bit strings from an enrollment (reference) measurement and any of the other 
measurements does not exceed 4.5% in this test. The fractional Hamming distance between bit 
strings of different SRAM blocks and different FPGAs should be close to 50%, such that each 
FGPA can be uniquely identified.  Reference [GKST07] investigated the distribution of 
Hamming distances between 8190-byte long strings derived from different SRAM blocks 
(inter-class distribution).  The analysis shows that the inter-class fractional Hamming distance 
distribution closely matches a normal distribution with mean 49.97% and a standard deviation 
of 0.3%.  The intra-class fractional Hamming distance distribution of startup bit strings has an 
average of 3.57% and a standard deviation of 0.13%. 

 

3.3.2 On the Cost of Extracting a 128-bit Key 
Due to the noisy nature of PUFs, a fuzzy extractor is required to provide error correction ca-
pabilities on the noisy measurements as well as privacy amplification to guarantee the uniform 
distribution of the final data. In general, we will need to choose an error correcting code, im-
plement its decoding algorithm on the FPGA, and implement an appropriate hash function.  In 
the following, we describe the choices that can be made to derive a 128-bit key, which can be 
used in combination with symmetric-key cryptography and the protocols proposed in Section 
4. 

 

The fuzzy extractor derives a key K from the SRAM startup bits by first correcting any errors 
present in the raw data stream coming from memory and then compressing and making the re-
sulting string uniformly distributed with a universal hash function. The minimal amount of 
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compression that needs to be applied by the hash function is expressed in the secrecy rate 
[ISS+06]. In [ISS+06], a method was presented for estimating this secrecy rate using a univer-
sal source coding algorithm called the Context-Tree Weighting Method. We have applied this 
method to the SRAM startup values. In repeated measurements of the same memory block, we 
find a secrecy rate of 0.76 bits per SRAM memory bit.  That means that to derive a secret of 
size N, we need at least 1.32 N source bits, i.e., a  secure 128 bit key requires 171 source bits 
to be fully random. In our experiments, the maximum number of errors that we have seen is 
about 12%.  Thus, assume conservatively that we have a bit error probability of 0.15 and that 
we are willing to accept a failure rate of 10-6.  Since we are assuming that the errors are inde-
pendent, a binary BCH [PeWe72] is a good candidate with N-bit code words and a minimum 
distance at least d=2t+1.  Since we need to generate in the end at least 171 information bits, it 
becomes an optimization problem to choose the best code in terms of hardware resources, 
number of SRAM bits required, performance, etc.  For example, using [511;19;t = 119]-BCH, 
we would need 9*511 = 4599 bits to generate 171 information bits. On the other hand, if we 
assume the error probability to be= 0.06 (i.e. assume that we only need to operate at 20°C), 
then we could use the binary [1023; 278; t = 102]-BCH code, which requires only 1023 bits of 
SRAM memory to generate 278 bits of information. 

4 Offline HW/SW Authentication for FPGAs 
In this section, we present two protocols to use the intrinsic PUF in an FPGA for IP protec-
tion. The first protocol assumes a trusted third party (TTP) that is allowed to see the IP block. 
Then, we introduce a protocol which provides total privacy, in the sense that not even the TTP 
has access to the IP block originating from the IP provider.   

As done in the protocol in [SiSc06], we assume that the hardware manufacturer implements a 
security module on the FPGA. This security module includes a PUF and an AES decryption 
module, which allows to decrypt encrypted configuration files and/or other software IP blocks.  
However, in [SiSc06] there is no discussion about fuzzy extractors, which are required to deal 
with noise and extract randomness from a PUF. The protocol assumes secure and 
authenticated channels between all parties involved in the protocol during the enrollment and 
online phases. During the offline phase an unauthenticated public channel is assumed. Notice 
that the public channel allows the TTP to have access to SW since it is only encrypted with a 
PUF response, which is stored in the TTP database. 

Finally, we assume, as implicitly done in [SiSc06], that the circuit used to obtain challenge-
response pairs during the enrollment protocol is destroyed (e.g. by blowing fuses) after en-
rollment and that subsequently, given a challenge Ci the corresponding response Ri' is only 
available internally to the decryption circuit in the FPGA.  Without, this assumption, anyone 
could access Ri, and the protocols proposed (including those in [SiSc06]) would be completely 
broken. 

4.1 HW/SW Authentication Protocols for FPGAs 
In our protocols we write Ci to denote the PUF challenge and the corresponding helper data 
required to reconstruct the PUF response Ri from a noisy version Ri'. 

We begin by describing how the combination of bitstream encryption and a key extracted 
from a PUF works in practice. It consists of the following steps: (i) loading the encrypted bit-
stream, (ii) challenging the PUF with a challenge Ci, (iii) measuring the PUF response Ri', (iv) 
retrieving the corresponding helper data from memory, (v) using a fuzzy extractor to extract 
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the key K from Ri' using the helper data (vi) decrypting the bitstream, and finally (vii) config-
uring the FPGA. 

During Enrollment, the hardware manufacturer (HWM) measures the PUF with all relevant 
inputs, and sends those inputs and the corresponding responses to the trusted third party. The 
system developer (SYS) sends the identity of the software and the hardware platform to the 
Trusted Third party, which asks the intellectual property provider (IPP) for the actual soft-
ware. The TTP encrypts the software with a key matching the PUF in the hardware and sends 
the encrypted version with the appropriate challenge to the PUF back to the system developer. 
In addition, the block is authenticated with a MAC using an independent challenge to the 
PUF. 

 

4.2 IP Protection Protocols Providing Code Confidentiality 
In this section, we answer positively the question of whether it is possible to develop proto-
cols with similar properties to the previous ones but without having the TTP have access to 
the software we want to protect. In the following, we do not assume any of the channels to be 
secure. However, we make the following assumptions: (1) the channels TTP-SYS, TTP-IPP, 
SYS-IPP are authentic (e.g. man-in-the-middle attacks are not possible), (2) it is possible to 
obtain the public-key of IPP (in an authenticated way) and use it for sending encrypted data to 
it, and (3) the TTP is “honest-but-curious”.  In other words, the TTP follows the protocol in an 
honest manner but tries to find out as much information as possible (i.e. he wants access to 
SW).  The essential difference is that in this protocol, the intellectual property provider per-
forms the encryption. By use of public key cryptography, we can assure that only the PUF 
knows the decryption key, even though the TTP still maintains the challenge response-lists.  



Intrinsic PUFs in FPGAs  9 

 

5 Conclusion 
In this paper, we describe efficient protocols for the IP-protection problem on FPGA code.  In 
addition, we have also summarized existing PUF constructions.  We pay particular attention to 
intrinsic PUFs as introduced in [GKST07].  This PUF construction is unique in the sense that 
it is intrinsic to FPGAs and thus, it does not require modification of the hardware or the 
manufacturing process to be used.  We have tested this construction on FPGAs with 
embedded block RAM memories which are not reset at power-up.  We have seen similar 
phenomena in ASICs and expect similar behavior on any other device which contains 
uninitialized SRAM memory.  At present, we have identified other properties of SRAM 
memory, which have the potential to be used as a PUF-source.  This will be investigated in 
future work.  We will also explore in the future the exact complexity of implementing a fuzzy 
extractor on an FPGA. Finally, we notice that the unique identifiers derived from the PUFs 
could be useful for tracking purposes. 
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