
PHYSICAL UNCLONABLE FUNCTIONS AND PUBLIC-KEY CRYPTO FOR FPGA IP
PROTECTION

Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, Pim Tuyls

Philips Research Laboratories, Eindhoven, The Netherlands
{Jorge.Guajardo,Sandeep.Kumar,Geert.Jan.Schrijen,Pim.Tuyls}@philips.com

ABSTRACT

In recent years, IP protection of FPGA hardware designs has
become a requirement for many IP vendors. To this end so-
lutions have been proposed based on the idea of bitstream
encryption, symmetric-key primitives, and the use of Phys-
ical Unclonable Functions (PUFs). In this paper, we pro-
pose new protocols for the IP protection problem on FPGAs
based on public-key (PK) cryptography, analyze the advan-
tages and costs of such an approach, and describe a PUF
intrinsic to current FPGAs based on SRAM properties. A
major advantage of using PK-based protocols is that they do
not require the private key stored in the FPGA to leave the
device, thus increasing security. This added security comes
at the cost of additional hardware resources but it does not
cause significant performance degradation.

1. INTRODUCTION

In today’s globalized economy, it has become standard busi-
ness practice to include third party Intellectual Property (IP)
into products. This trend has led to the realization that in-
ternally developed IP is of strategic importance, for two rea-
sons: (i) it decreases the design cycle by implementing re-
use strategies and (ii) it is a source of additional licensing
income from external parties. However, IP creators must
face the counterfeiting challenge. For example, it is esti-
mated that as much as 10% of all high tech products sold
globally are counterfeit. This translates into a conservative
estimate of US$100 billion of global IT industry revenue
lost due to counterfeiting [1]. The same paper advises to
employ anti-counterfeiting technologies to mitigate the ef-
fects of counterfeiters. This paper deals explicitly with one
such technology and its implementation on FPGAs.

SRAM-based FPGAs, which are the majority of the mar-
ket, offer a very flexible solution for implementation of valu-
able designs since they can be reprogrammed (configured) in
the field. This allows for instance to update current designs
with new and improved ones and stands in sharp contrast
with ASIC implementations. Often FPGA designs are rep-
resented as bitstreams and stored in external memory e.g.
PROM or flash. When the FPGA is powered up, the bit-

stream is loaded onto the FPGA and the FPGA is configured.
During loading, an attacker can easily tap the bitstream and
make a copy of it, which he can then use to (illegally) pro-
gram other FPGAs without paying the IP owner’s licensing
fees. This attack is called a cloning attack and it is a serious
concern to IP developers nowadays.

From a security perspective, the counterfeiting threat can
be best explained as an authentication problem. In particu-
lar, we are interested in providing (S1) hardware IP authen-
tication (a hardware design runs only on a specific device),
(S2) hardware platform authentication (the FPGA allows
only authentic designs to execute), and (S3) complete design
confidentiality (only the intended design recipient and no
one else has access to the design). S1 and S2 were originally
introduced in [2] as key services in the IP authentication
problem. The problem of design traceability was considered
in [3]. Most widely available solutions to the IP authentica-
tion problem are based on bitstream encryption. The key
used to encrypt the bitstream is stored in either non-volatile
memory added to the FPGA or the FPGA stores a long-term
key in a few hundred bits of dedicated RAM backed-up by
an externally connected battery. Both solutions come with a
price penalty and are therefore not very attractive. The sec-
ond solution has the additional disadvantage of the battery’s
limited life time, which further shortens the design’s oper-
ating life. Both effects can result in the key and the design
being lost after some time, rendering the overall IP block
non-functional.

CONTRIBUTIONS. In this paper, we will focus on provid-
ing services S1, S2 and S3. We depart from previous works
and study the advantages that asymmetric cryptography pro-
vides in this setting. In particular, this allows that secret-key
information never has to leave the FPGA in contrast to the
proposals in [2, 4]. As usual this comes at the cost of having
to implement public-key cryptography on the FPGA, which
requires more hardware resources than symmetric-key based
constructions. However, we also show that it is possible to
obtain a performance comparable to that of symmetric-key
cryptography by encrypting and scrambling in the sense of
[5]. In addition, we describe two possible implementations

of Physical Unclonable Functions (PUFs) one of which does
not require modification of the hardware and thus, it is in-
trinsic to the FPGA. Finally, we show some of the trade-offs
that can be made when implementing a fuzzy extractor.

NOTATION. We denote an IP block by SW and use this
terminology interchangeably. We write EncK(·) to mean
the symmetric encryption of the argument under key K. We
assume that Enc(·) provides semantic security against cho-
sen plaintext attacks as the standard CBC mode of opera-
tion for symmetric ciphers provides. Similarly, we write
EncKpubI

(·) to indicate the PK encryption using I’s public
key and SigKprivI

(·) to indicate a signature on the argument
using the private key KprivI

of I . Decryption and verifica-
tion operations are then written DecKprivI

(·) and VerKpubI
(·),

respectively. We will denote an error correcting code1 by C
and a set of universal hash functions [6] byH.

ORGANIZATION. Section 2 provides an overview of PUFs,
their properties, security assumptions, and fuzzy extractors.
In Sect. 3, we introduce a PK-crypto based protocol that al-
lows for a solution in which the private key associated with
a device does not need to leave it, even during enrollment.
Section 4 describes several PUF constructions including in-
trinsic PUFs which are based on the properties of SRAM
memories present in FPGAs. We end in Sect. 5 analyzing
the cost of a fuzzy extractor implementation.

2. PHYSICAL UNCLONABLE FUNCTIONS

Physical Unclonable Functions, introduced by Pappu et al.
[7], consist of inherently unclonable physical systems. They
inherit their unclonability from the fact that they consist of
random components present in the manufacturing process
that cannot be controlled. When a stimulus is applied to the
system, it reacts with a response. Such a pair of a stimu-
lus C and a response R is called a challenge-response pair
(CRP). In particular, a PUF is considered as a function that
maps challenges to responses. The following assumptions
are made on the PUF: (1) it is assumed that a response Ri

(to a challenge Ci) gives only a negligible amount of infor-
mation on another response Rj (to a different challenge Cj)
with i �= j; (2) without having the corresponding PUF at
hand, it is impossible to come up with the response Ri cor-
responding to a challenge Ci, except with negligible prob-
ability; and (3) it is assumed that PUFs are tamper evident.
This implies that when an attacker tries to investigate the
PUF to obtain detailed information of its structure, the PUF
is destroyed. In other words, the PUF’s challenge-response
behavior is changed substantially. Due to noise, PUFs are

1Given a [n, k, d]-code C over Fq its words are n-tuples of Fq elements.
The code has minimum distance d, it can correct up to �(d− 1)/2� errors,
and it has cardinality qk; i.e. it can encode up to qk possible messages.

observed over a noisy measurement channel i.e. when a PUF
is challenged with Ci a response R′

i which is a noisy version
of Ri is obtained.

FUZZY EXTRACTOR/HELPER DATA ALGORITHM. In
[8] it was shown how PUFs can be used to store keys in
a secure way. Since PUF responses are noisy and the re-
sponses are not fully random, a Fuzzy Extractor or Helper
Data Algorithm [9, 10] is needed to extract one (or more) se-
cure keys from the PUF responses. In what follows, we will
make use of an error correcting code C and a set H of uni-
versal hash functions. Due to the noisy nature of the PUF
data, helper data W are generated during the enrollment
phase. The enrollment phase (carried out in a trusted en-
vironment) runs a probabilistic procedure called Gen, which
involves: (1) obtaining a response R and choosing a random
code word CS from C; (2) then, a first helper data vector
equal to W1 = CS ⊕ R is generated, (3) a hash function
hi is chosen at random from H and (4) the key K is de-
fined as K ← hi(R) and the helper data W2 = i. Summa-
rizing the procedure Gen is defined as follows, (K,W) =
(K, {W1,W2}) ← Gen(R). Later during the key recon-
struction phase, the key is reconstructed based on a noisy
measurement R′

i and the helper data W . In particular, a pro-
cedure K ← Rep(R′,W) is run. During the procedure Rep
the following steps are carried out: (1) Information Recon-
ciliation, using the helper data W1, W1 ⊕ R′ is computed,
then the decoding algorithm of C is used to obtain CS , and
from CS , R is reconstructed as R = W1 ⊕ CS ; and (2) Pri-
vacy amplification, the helper data W2 is used to choose the
correct hash function hi ∈ H and to reconstruct the key as
K = hi(R).

3. PUF-BASED IP AUTHENTICATION FOR FPGAS

In this section, we introduce protocols based on PK encryp-
tion for protection of IP blocks. We also compare our proto-
col to previous protocols in the literature and analyze the
advantages that PK cryptography provides in this setting.
In the discussed protocols, we only deal with the following
parties: the system integrator or designer (SYS), the hard-
ware IP-Provider or core vendor (IPP), the hardware/FPGA
manufacturer (HWM) or vendor, and a Trusted Third Party
(TTP) [11]. We refer to [11] for a detailed description of all
parties in the IP protection chain. Notice that in the proto-
col proposed in this section as well as in the work presented
in [2] and [4], it is assumed that there exists an internal se-
curity module with access to the PUF circuit and either an
AES module [2, 4] or elliptic curve (EC) and hash modules.
In contrast to [2, 4], in this paper the private key never has
to leave the device, even during enrollment.

PUBLIC-KEY (PK) BASED APPROACHES. Previous pro-

tocols for IP protection [2, 4] are based on the use of symmetric-
key cryptography and PUFs. In this section, we investigate
the advantages that PK cryptography provides in this set-
ting. Figure 1 shows the proposed protocol. Notice that in
contrast to Fig. 2, the PK-based protocol in Fig. 1 requires
the TTP to interact only during the enrollment phase. In ad-
dition, we do not require an additional nonce to guarantee
privacy from the TTP, as PK crypto gives us this for “free”.

Assumptions and Notation:
– Communication channels between SYS-TTP, TTP-IPP, and SYS-IPP are authenticated (no man-in-the-middle attack

possible).
– The TTP and IPP have public-private key pairs (KpubTTP

, KprivTTP
) and (KpubIPP

, KprivIPP
), respec-

tively.
– The SYS can generate (with the help of the internal FPGA hardware security module) a public-private key pair

(KpubC1
, KprivC1

) internally in the FPGA.

– We write InfoHW to mean IDHW‖C1‖W1‖W2‖KpubC1
.

– We write InfoSW to mean IDSW‖KpubIPP
.

– System parameters (E(F
2k) finite field F

2k , generator point P ∈ E(F
2k)) are published by the TTP.

Enrollment Protocol:

SYS TTP IPP
InfoHW � InfoSW�

Proof of Knowledge of KprivC1� � Proof of Knowledge of KprivIPP� �
CertKprivTTP

(InfoHW)� CertKprivTTP
(InfoSW)�

Authentication Protocol:

SYS IPP
IDSW‖ CertKprivTTP

(InfoHW) �
D‖ SigKprivIPP

(D)‖CertKprivTTP
(InfoSW)� D ← EncKpubC1

(SW)

Fig. 1. New Public-key Based Authentication Protocol.

During enrollment the SYS obtains the system parameters
published by the TTP, which include: finite field F2k , an el-
liptic curve E(F2k), and an EC point P ∈ E(F2k) of prime
order. Then, SYS instructs the internal FPGA security mod-
ule to generate a new private-public key pair, by choosing a
challenge C1 and helper data W1,W2, deriving a secret key
KprivC1

(which corresponds to hi(R), where R is the PUF
response as in Sect. 2) and computing KpubC1

= KprivC1
·P .

Notice that KprivC1
is an integer and KpubC1

∈ E. The
SYS requests a new certificate from the TTP by sending
C1,W1,W2,KpubC1

to the TTP and executing a zero knowl-
edge proof (and proving) that he is in possession of a device
that knows the private key KprivC1

corresponding to the pub-
lic key KpubC1

(without disclosing the private key). Neither
SYS nor HWM have direct access to KprivC1

. Upon suc-
cessful completion of this proof, the TTP sends the SYS a
certificate certifying the public key and the helper data in-
formation. The IPP goes through a similar certification pro-
cedure for his public key. Then, the authentication protocol
between the SYS and IPP consists in exchanging: (i) certifi-
cates, which proof authenticity of public keys2, (ii) the sig-
nature on the encrypted bitstream D, which provides authen-
ticity and integrity of D, and (iii) the encrypted bitstream it-

2It is assumed that the TTP’s public key is stored in tamper resistance
storage.

self, which guarantees confidentiality (even from the TTP).

PREVIOUS SYMMETRIC-KEY (SK) APPROACHES.
In [2], a protocol is described that provides hardware IP au-
thentication (S1) and hardware platform authentication (S2).
This protocol has been recently simplified in [4]. In addi-
tion, the authors in [4] introduce a new protocol that allows
the parties involved in the IP-block exchange to communi-
cate without the TTP having access to the IP-block itself.
This protocol is shown in Fig. 2. In Fig. 2, we write Ci to

Assumptions:
– Communication channels between SYS-TTP, TTP-IPP, and SYS-IPP are authenticated.
– Communication channel HWM-TTP is secure and authenticated.
– Honest but Curious TTP.
– Both TTP and SYS obtain the authentic IPP’s public key, KpubIPP

.
– Random nonce η.

Enrollment Protocol:
HWM TTP

IDHW‖
{{C1, R1}, . . . {Cn, Rn}}�

Authentication Protocol:

SYS TTP IPP
IDSW‖IDHW‖
EncKpubIPP

(η)�
IDSW‖Ci‖Cj‖
EncKpubIPP

(Ri‖Rj)‖
EncKpubIPP

(η)�
Ki ← Hash(Ri‖η),
Kj ← Hash(Rj‖η),

D ← EncKi
(SW‖IDSW)

Ci‖Cj‖D‖MACKj
(Ci‖Cj‖D)�

Fig. 2. SK-based Authentication Protocol [4]

denote the PUF challenge and the corresponding helper data
required to reconstruct the PUF response Ri from a noisy
version R′

i. It is implicitly assumed that the circuit used to
obtain CRPs during the enrollment protocol is destroyed af-
ter enrollment and that subsequently, given a challenge Ci

the corresponding response R′
i is only available internally

to the decryption circuit in the FPGA. Without this assump-
tion, anyone could access Ri, and the protocols proposed in
[2, 4] would be completely broken. Finally, notice the last
message of the protocol is also sent in an off-line fashion,
when the bitstream is loaded onto the FPGA from insecure
non-volatile storage.

DISCUSSION. The memory requirements are to a large ex-
tent the same for both SK and PK approaches. In particu-
lar, the same number of bits of helper data (see Sect. 5) are
required to generate the private key in the PK based solu-
tion and the secret-key in the SK based solution. Similarly,
the error correcting codes necessary in both cases have the
same complexity. The PK-based solution requires certifi-
cates, which are not present in the SK-based solution. This
implies if using straight forward certificates an additional
memory requirement of 2 × 492 = 984 bits3, assuming an

3This includes only the length of the public key and associated signa-

EC defined over a 163-bit field. However, this can be re-
duced to 328 bits by using implicit certificates [12]. Re-
garding performance, we have to perform a signature veri-
fication and a decryption. First, notice that efficient imple-
mentations of ECC for FPGAs are well known [13] as well
as hash functions [14]. Signature performance should not
constitute a bottleneck since it requires the computation of a
hash (comparable in speed to a MAC in the SK case) plus a
PK operation on the hash (less than 1 msec [14]). However,
the PK decryption operation could constitute a heavy bur-
den on the application as it has to be performed on L/163
blocks, where L is the length of the bitstream. To mini-
mize the impact of PK decryption, there are two possibili-
ties. First, we could modify the protocol in Fig. 1 to simply
exchange public keys between IPP and SYS, and then fall
back to a protocol similar to [4] for encryption and authenti-
cation. This would require the implementation of a symmet-
ric encryption algorithm in addition to ECC and hash func-
tion modules. The second possibility is to use the construc-
tion introduced in [5]. The idea here is to encrypt a single
163-bit block and use hashes (or a stream cipher seeded with
the hash of the unencrypted bitstream) to generate a pseudo-
random sequence to encrypt the bitstream with a one-time
pad. Such a scheme would require a single PK encryption
and two hash computations. Finally, we notice that our PK
based scheme allows us to reduce the number of rounds in
the protocol compared to [2, 4] and as previously mentioned,
the private key does not need to leave the FPGA.

HOW EVERYTHING WORKS TOGETHER. For com-
pleteness we describe how the combination of bitstream PK
encryption and a key extracted from a PUF works for FPGA
IP protection applications. The process is as follows: (i) load
the encrypted bitstream D, signature SigKprivIPP

(D), and
certificate CertKprivTTP

(InfoSW) onto the FPGA, the FPGA
then (ii) verifies the certificate information and signature us-
ing the TTP’s public key KpubTTP , and (iii) verifies the signa-
ture on the encrypted bitstream D using the IPP’s public key
KpubIPP (if any of these checks fails configuration is aborted),
finally internally the FPGA (iv) challenges the PUF with
challenge Ci (v) measures the PUF response R′

i, (vi) re-
trieves helper data W1,W2 from memory, (vii) uses a fuzzy
extractor to extract the key KprivC1

← Rep(R′
i,W1,W2),

(viii) decrypts the bitstream, and finally (ix) configures the
FPGA with the plain bitstream.

4. PUF CONSTRUCTIONS

This section describes known PUF constructions including:
Optical and Silicon PUFs, Coating PUFs, and SRAM PUFs.

ture. The certificate information has to be included in both SK and PK
solutions, as previously argued.

SILICON PUFS AND OPTICAL PUFS. Pappu et al. [7]
introduce the idea of a Physical One-Way Function. They
use a bubble-filled transparent epoxy wafer and shine a laser
beam through it leading to a response interference pattern.
This kind of optical PUF is hard to use in the field because
of the difficulty to have a tamper resistant measuring device.
Gassend et al. introduce Silicon Physical Random Functions
(SPUF) [15] which use manufacturing process variations in
ICs with identical masks to uniquely characterize each chip.
The statistical delay variations of transistors and wires in the
IC were used to create a parameterized self oscillating cir-
cuit to measure frequency which characterizes each IC. Sili-
con PUFs are very sensitive to environmental variations like
temperature and voltage. Lim et al. [16] introduce arbiter
based PUFs which use a differential structure and an arbiter
to distinguish the difference in the delay between the paths.
Gassend et al. [17] also define a Controlled Physical Ran-
dom Function (CPUF) which can only be accessed via an
algorithm that is physically bound to the randomness source
in an inseparable way. This control algorithm can be used to
measure the PUF but also to protect a ”weak” PUF from ex-
ternal attacks. Recently, Su et al. [18] present a custom built
circuit array of cross-coupled NOR gate latches to uniquely
identify an IC. Here, small transistor threshold voltage Vt

differences that are caused due to process variations lead to
a mismatch in the latch to store a 1 or a 0.

COATING PUFS. In [8], Tuyls et al. present coating PUFs
in which an IC is covered with a protective matrix coating,
doped with random dielectric particles at random locations.
The IC also has a top metal layer with an array of sensors to
measure the local capacitance of the coating matrix that is
used to characterize the IC. The measurement circuit is inte-
grated in the IC, making it a controlled PUF. It is shown in
[8] that it is possible to extract up to three key bits from each
sensor in the IC leading to approximately 600 bits/mm2. A
key observation in [8] is that the coating can be used to store
keys (rather than as a CRP repository as in previous works)
and that these keys are not stored in memory. Rather, when-
ever an application requires the key, the key is generated on
the fly. This makes it much more difficult for an attacker to
compromise key material in security applications. Finally,
Tuyls et al. [8] show that active attacks on the coating can
be easily detected, thus, making it a good countermeasure
against probing attacks.

FPGA INTRINSIC PUFS AND SRAM MEMORIES. The
disadvantage of most of the previous approaches is the use
of custom built circuits or the modification of the IC manu-
facturing process to generate a reliable PUF. In [4], the au-
thors approach the problem by identifying an Intrinsic PUF
which is defined as a PUF already present in the device and
that requires no modification to satisfy the security goals.

We describe next how SRAM memories, which are widely
available in almost every computing device including mod-
ern FPGAs, can be used as an Intrinsic PUF.

A CMOS SRAM cell is a six transistor device formed
of two cross-coupled inverters and two access transistors
connecting to the data bit-lines based on the word-line sig-
nal. The transistors forming the cross-coupled inverters are
constructed particularly weak to allow driving them easily
to 0 or 1 during a write process. Hence, these transistors
are extremely vulnerable to atomic level intrinsic fluctua-
tions which are outside the control of the manufacturing pro-
cess and independent of the transistor location on the chip
(see [19]). In practice, SRAM cells are constructed with
proper width/length ratios between the different transistors
such that these fluctuations do not affect the reading and
writing process under normal operation. However, during
power-up, the cross-coupled inverters of a SRAM cell are
not subject to any externally exerted signal. Therefore, any
minor voltage difference that shows up on the transistors due
to intrinsic parameter variations will tend toward a 0 or a 1
caused by the amplifying effect of each inverter acting on
the output of the other inverter. Hence with high probability
an SRAM cell will start in the same state upon power-up. On
the other hand, different SRAM cells will behave randomly
and independently from each other. In [4], the authors con-
sider as a challenge a range of memory locations within a
SRAM memory block. The response are the start-up val-
ues at these locations. Notice also that SRAM-based PUFs
produce a binary string as result of a measurement, in con-
trast to other PUFs, which have to go through a quantization
process before obtaining a bit string from the measurement.
This results in a reduction in the complexity of the measure-
ment circuit. For our proof of concept, we use FPGAs which
include dedicated RAM blocks.

In order to be useful as a PUF, SRAM startup values
should have good statistical properties and be robust over
time, to temperature variations, and have good identification
performance. These properties were studied in [4]. Here we
summarize their findings. Regarding robustness, the Ham-
ming distance between bit strings from repeated measure-
ments of the same SRAM block (intra-class measurements)
should be small enough, such that errors between enroll-
ment and authentication measurements can be corrected by
an error correcting code admitting efficient decoding. In
[4], the authors compared the Hamming distance between
a first measurement and repeated measurements of the same
SRAM block carried over approximately two weeks. The
experiment was done with four different RAM blocks, lo-
cated in two different FPGAs. The measurements showed
that less than 4% of the startup bit values change over time.
Similarly, preliminary data indicates that measurements at
temperatures ranging from−20◦C to 80◦C result in bit strings
with maximum fractional Hamming distances of 12% when

compared to a reference measurement performed at 20◦C.
Finally, we notice that intra-class Hamming distances of the
SRAM startup values should remain small, even when other
data has been written into the memory before the FPGA was
restarted. In particular, it is important that the startup values
are unaffected by aging and the use of the SRAM blocks
to store data. The tests in [4] indicate that storing zeros or
ones into the memory has very little influence in the SRAM
start-up values. The fractional Hamming distance between
bit strings from an enrollment (reference) measurement and
any of the other measurements does not exceed 4.5% in this
test. The fractional Hamming distance between bit strings
of different SRAM blocks and different FPGAs should be
close to 50%, such that each FGPA can be uniquely identi-
fied. Reference [4] investigated the distribution of Hamming
distances between 8190-byte long strings derived from dif-
ferent SRAM blocks (inter-class distribution). The analysis
shows that the inter-class fractional Hamming distance dis-
tribution closely matches a normal distribution with mean
49.97% and a standard deviation of 0.3%. The intra-class
fractional Hamming distance distribution of startup bit strings
has an average of 3.57% and a standard deviation of 0.13%.

5. ON THE COST OF EXTRACTING A 163-BIT KEY

It is well known that due to the noisy nature of PUFs a fuzzy
extractor is required. A fuzzy extractor, as explained in
Sect. 2, provides error correction capabilities to take care of
the noisy measurements and privacy amplification to guar-
antee the uniform distribution of the final secret. In general,
we will need to choose an error correcting code, implement
its decoding algorithm on the FPGA, and implement a uni-
versal hash function, chosen at random from a set H during
enrollment. In the following, we describe the choices that
can be made to derive a 163-bit key, which can be used in
combination with elliptic curve cryptography and the proto-
cols proposed in Sect. 3.

SECRECY RATE AND ERROR CORRECTION. The
fuzzy extractor derives a key K from the SRAM startup bits
R by compressing these bits with a hash function hi. The
minimal amount of compression that needs to be applied by
the hash function is expressed in the secrecy rate SR [20].
The maximum achievable secrecy rate SR is given by the
mutual information between bit strings derived during en-
rollment and reconstruction, I(R,R′). In [20], a method was
presented for estimating this secrecy rate using a universal
source coding algorithm called the Context-Tree Weighting
Method. We have applied this method to the SRAM startup
values. By estimating I(R,R′) between repeated measure-
ments of the same memory block, we find an average SR of
0.76 bits per SRAM memory bit. That means that to derive
a secret of size N , we need at least �1.32N� source bits. In

order to choose C, we first consider the number of bits of in-
formation, which have to be at least �1.32N�N=163 = 216
bits. Assuming that all bits are independent, the probabil-
ity that a string of S bits will have more than t errors, de-
noted by Ptotal, is given by

∑S
i=t+1

(
S
i

)
pi

b(1 − pb)S−i =
1 −∑t

i=0

(
S
i

)
pi

b(1 − pb)S−i, where pb denotes the bit er-
ror probability. Notice that the maximum number of er-
rors that we have experimentally seen is about 12%. Thus,
assume conservatively that we have a bit error probability
pb = 0.15 and that we are willing to accept a failure rate
of Ptotal = 10−6. Since, we are assuming that the er-
rors are independent, a binary BCH code is a good can-
didate with N -bit code words and a minimum distance at
least d = 2t + 1. Since we need to generate in the end
at least 216 information bits, it becomes an optimization
problem to choose the best code in terms of hardware re-
sources, number of SRAM bits required, performance, etc.
For example, using [511, 19, t = 119]-BCH, we would need
12 × 511 = 6132 bits to generate 228 information bits. On
the other hand, if we assume pb = 0.06 (i.e. assume that we
only need to operate at 20◦C), then we could use the binary
[1023, 278, t = 102]-BCH code, which requires only 1023
bits of SRAM memory to generate 278 bits of information.

PRIVACY AMPLIFICATION. There has been extensive re-
search on universal hash functions (see for example [21]).
However, their suitability for hardware implementations has
not been thoroughly investigated. To our knowledge, [22,
23] are the only ones that consider their hardware imple-
mentation. However, no one seems to have considered their
implementation on FPGAs. Thus, we will consider what the
best architecture for FPGAs is in future work.

6. CONCLUSIONS

In this paper, we have proposed new and efficient protocols
for the IP-protection problem based on PK cryptographic
primitives. In addition, we have described known PUF con-
structions with particular attention to those that are based on
the properties of SRAM because of their presence in cur-
rent FPGAs. We have tested this construction on FPGAs
with embedded block RAM memories which are not reset at
power-up. We have seen similar phenomena in ASICs and
expect similar behavior on any other device which contains
uninitialized SRAM memory. At present, we have identified
other properties of SRAM memory, which have the poten-
tial to be used as a PUF-source. This will be investigated
in future work. We will also explore in the future the exact
complexity of implementing a fuzzy extractor on an FPGA.
Finally, we notice that the unique identifiers derived from
the PUFs could be useful for tracking purposes.

7. REFERENCES

[1] KPMG Electronics, Software & Services and Alliance for
Gray Market and Counterfeit Abatement, “Managing the
Risks of Counterfeiting in the Information Technology Indus-
try, White Paper,” 2005, available at http://www.agmaglobal.
org/.

[2] E. Simpson and P. Schaumont, “Offline Hardware/Software
Authentication for Reconfigurable Platforms,” in Crypto-
graphic Hardware and Embedded Systems — CHES 2006,
ser. LNCS, L. Goubin and M. Matsui, Eds., vol. 4249.
Springer, October 10-13, 2006, pp. 311–323.

[3] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L.
Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe,
“Watermarking techniques for intellectual property protec-
tion,” in Design Automation Conference — DAC ’98. New
York, NY, USA: ACM Press, 1998, pp. 776–781.

[4] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA
Intrinsic PUFs and Their Use for IP Protection,” in Crypto-
graphic Hardware and Embedded Systems — CHES 2007,
ser. LNCS. Springer, To appear 2007.

[5] M. Jakobsson, J. P. Stern, and M. Yung, “Scramble All, En-
crypt Small,” in Fast Software Encryption — FSE’99, ser.
LNCS, L. R. Knudsen, Ed., vol. 1636. Springer, March
24-26, 1999, pp. 95–111.

[6] L. Carter and M. N. Wegman, “Universal Classes of Hash
Functions,” J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154,
1979.

[7] R. S. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physi-
cal one-way functions,” Science, vol. 297, no. 6, pp. 2026–
2030, 2002, available at http://web.media.mit.edu/∼brecht/
papers/02.PapEA.powf.pdf.

[8] P. Tuyls, G.-J. Schrijen, B. Skoric, J. van Geloven, N. Ver-
haegh, and R. Wolters, “Read-Proof Hardware from Protec-
tive Coatings,” in Cryptographic Hardware and Embedded
Systems — CHES 2006, ser. Lecture Notes in Computer Sci-
ence, vol. 4249. Springer, October 10-13, 2006, pp. 369–
383.

[9] Y. Dodis, M. Reyzin, and A. Smith, “Fuzzy extractors: How
to generate strong keys from biometrics and other noisy
data,” in Advances in Cryptology —- EUROCRYPT 2004,
ser. LNCS, C. Cachin and J. Camenisch, Eds., vol. 3027.
Springer-Verlag, 2004, pp. 523–540.

[10] J.-P. M. G. Linnartz and P. Tuyls, “New Shielding Func-
tions to Enhance Privacy and Prevent Misuse of Biometric
Templates,” in Audio-and Video-Based Biometrie Person Au-
thentication — AVBPA 2003, ser. LNCS, J. Kittler and M. S.
Nixon, Eds., vol. 2688. Springer, June 9-11, 2003, pp. 393–
402.

[11] T. Kean, “Cryptographic rights management of FPGA intel-
lectual property cores,” in ACM/SIGDA tenth international
symposium on Field-programmable gate arrays — FPGA
2002, 2002, pp. 113–118.

[12] D. R. L. Brown, R. P. Gallant, and S. A. Vanstone, “Prov-
ably Secure Implicit Certificate Schemes,” in Financial Cryp-

tography — FC 2001, ser. LNCS, F. S. P, Ed., vol. 2339.
Springer, February 19-22, 2001, pp. 156–165.

[13] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. Gupta,
D. Finchelstein, E. Goupy, and D. Stebila, “An End-to-End
Systems Approach to Elliptic Curve Cryptography,” in Cryp-
tographic Hardware and Embedded Systems — CHES 2002,
ser. LNCS, S. K. B, Ç. K. Koç, and C. Paar, Eds., vol. 2523.
Springer, August 13-15, 2002, pp. 349–365.

[14] R. Lien, T. Grembowski, and K. Gaj, “A 1 Gbit/s Partially
Unrolled Architecture of Hash Functions SHA-1 and SHA-
512,” in Topics in Cryptology — CT-RSA 2004, ser. LNCS,
T. Okamoto, Ed., vol. 2964. Springer, February 23-27, 2004,
pp. 324–338.

[15] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas,
“Silicon physical unknown functions,” in ACM Conference
on Computer and Communications Security — CCS 2002,
V. Atluri, Ed. ACM, November 2002, pp. 148–160.

[16] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van
Dijk, and S. Devadas, “Extracting secret keys from
integrated circuits,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 13, no. 10, pp.
1200–1205, October 2005. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1561249

[17] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Con-
trolled Physical Random Functions,” in ACSAC ’02: Pro-
ceedings of the 18th Annual Computer Security Applications
Conference. Washington, DC, USA: IEEE Computer Soci-
ety, 2002, p. 149.

[18] Y. Su, J. Holleman, and B. Otis, “A 1.6pJ/bit 96% Sta-
ble Chip-ID Generating Cicuit using Process Variations,” in
ISSCC ’07: IEEE International Solid-State Circuits Con-
ference. Washington, DC, USA: IEEE Computer Society,
2007, pp. 406–408.

[19] B. Cheng, S. Roy, and A. Asenov, “The impact of random
doping effects on CMOS SRAM cell,” in European Solid
State Circuits Conference. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 219–222.

[20] T. Ignatenko, G. Schrijen, B. Skoric, P. Tuyls, and F. Willems,
“Estimating the Secrecy-Rate of Physical Unclonable Func-
tions with the Context-Tree Weighting Method,” in IEEE In-
ternational Symposium on Information Theory, Seattle, USA,
July 2006, pp. 499–503.

[21] W. Nevelsteen and B. Preneel, “Software Performance of
Universal Hash Functions,” in Advances in Cryptology —
EUROCRYPT’99, ser. LNCS, J. Stern, Ed., vol. 1592.
Springer, May 2-6, 1999, pp. 24–41.

[22] H. Krawczyk, “LFSR-based Hashing and Authentication,”
in Advances in Cryptology - CRYPTO ’94, ser. LNCS,
Y. Desmedt, Ed., vol. 839. Springer, August 21-25, 1994,
pp. 129–139.

[23] J.-P. Kaps, K. Y., and B. Sunar, “Energy Scalable Universal
Hashing.” IEEE Trans. Computers, vol. 54, no. 12, pp. 1484–
1495, 2005.

