
Some Thoughts about Implementation
Properties of Stream Ciphers?

Sandeep Kumar, Kerstin Lemke, Christof Paar

Horst Görtz Institute for IT Security
Ruhr-Universität Bochum, Germany

www.crypto.rub.de
{kumar, lemke, cpaar}@crypto.rub.de

Abstract. This contribution describes general considerations for evalu-
ating the quality of a cryptographic implementation, with a strong focus
on hardware implementation of stream ciphers. In particular, the fea-
tures area efficiency, power, and secure implementation are discussed.
Even though the main target of the treatment here are stream ciphers,
some of the thoughts presented are directly applicable to other crypto
algorithms such as block ciphers.

1 Introduction

1.1 About this Document

Stream ciphers have always had the reputation of being more efficient than their
cousins in the symmetric family, block ciphers. Even though this assumption is
often true, it is not entirely clear what exactly “more efficient” means. Thus, we
believe, a discussion about what constitutes a cipher with “good” implementa-
tion properties is a worthwhile undertaking. This contribution describes general
considerations for evaluating the quality of a stream cipher implementation, with
a strong focus on hardware implementation. Given the often predicted advent of
pervasive computing applications, which may often require highly efficient (i.e.,
“cheap”) crypto solutions, stream ciphers are a particular interesting class of
ciphers. In this context, we hope that our treatment can provide some aid for
designing especially cost efficient stream ciphers. Consequently, our discussion
will mainly be relevant for stream ciphers designed with hardware in mind, such
as ciphers based on Linear Feedback Shift Registers (LFSRs). Ciphers which are
optimized for software implementations, such as RC4, can also benefit from the
discussion here but the applicability is not as straightforward.

Some of the material we provide here, in particular Sections 2 and 3, is read-
ily available in the computer engineering literature. However, we tried to select
the material most relevant to stream ciphers and to present it accessible to cryp-
tographers with an electrical engineering background. We do not claim that we
? The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT,
the European Network of Excellence in Cryptography



provide metrics or rules that are universally “true” and that can easily be turned
into a cookbook for designing “optimum” ciphers. In fact, in practice one has
to often strive for a balance between competing optimization parameters, e.g.,
power and throughput. Also, as will become clear when reading this document,
there are quite a bit of open issues which have not been researched well enough.
In any case, hope that our treatment helps to give a bit of an insight in imple-
mentation issues in general. Some of the discussion presented here might also be
applicable to other crypto algorithms (or other digital systems for that matter).

1.2 Some General Comments about Implementing Stream Ciphers

Cryptographic algorithm have been implemented in digital form at least since
the early 1970s. Almost all work up to the mid 1990s, and much of the more
recent work, has focused on high throughput architectures. Typical examples
for published work include high speed DES [7, 4, 15] or RSA architectures [13,
1]. The general attitude was “the faster the better”. Given the state of VLSI
technology and computer clock rates, this was in fact a goal worthwhile pursuing:
having RSA512 operations which take several seconds on PCs in the 1980s and
early 1990s wasn’t too appealing. However, Moore’s Law (roughly speaking:
computer power doubles every 18 months while the costs stay constant) is an
exponential function which has made the achievement of sheer performance in
crypto implementations an increasingly easier task in the last few years.

On the other hand, there have been (at least) two other main parameters
emerging which can play a central role in many applications:

– cost (taken in a broad sense) and
– security

of the implementation. The fact that these two implementation parameters have
become more important has several reasons: (i) Whereas in the past cryptogra-
phy was mostly needed for specialized applications such as banking and govern-
ment communication, the number of cost-sensitive consumer products which
incorporate cryptographic functions has increased dramatically over the last
decade. (ii) Mobile applications, which have barely been in existence before the
1990s, have specific needs (low power and low computational complexity) and
are of great importance nowadays. (iii) Pervasive computing applications such
as RFID will put even more restrictive demands on the implementation of cryp-
tographic functionality due to its size, power and financial constraints. Based on
all this arguments an initial general conclusion is that stream ciphers might gain
importance, since they have the potential to allow efficient implementation.

1.3 What Are “Good” Implementation Properties Anyway?

Let’s now discuss the two parameters cost and security of implementations a
little bit more.“Cost” can mean different things, in particular chip area (which
is related to the bit complexity of the algorithm) and power consumption. How-
ever, there are more subtle aspects too such as regularity of the algorithm in



a hardware realization, depth of a boolean function (critical path), or the ac-
tual costs in a financial sense which are based on the chip area but also on the
technology required. Finally, with the growing popularity importance of mobile
application, the energy and power consumption of an algorithms has become
another important implementation parameter.

In the reminder of this document, we will focus on the following three core
parameters of stream cipher implementations:

– chip area measured in transistors
– power consumption
– security with respect to implementation attacks

2 Area Constraints

Implementations of stream ciphers, just as any other digital system, consist of
a relatively small set of atomic functions. The main components in a stream
cipher are the shift elements consisting of flip-flops (or other storage elements)
and combinational elements creating a boolean logic. In addition, in actual VLSI
implementation there are other functions, for instance pass transistors which can
serve as switches. However, we will in the following restrict the discussion on the
complexity of logic gates and storage elements. We assume CMOS logic, the
dominant logic style for virtually all commercial IC nowadays.

If we attempt to evaluate the area costs of a cipher (e.g., for comparing
whether cipher X is better than cipher Y) we need to a metric for comparing
both logic and memory elements. We argue that stream ciphers can be more
efficiently designed by going below the gate or storage element level. The atomic
device on a digital chip is a transistor. Even though transistors may have different
sizes on a chip, we argue that a transistor count provides a reasonable metric
for comparing different building blocks. Thus, we provide in Table. 1, the area
complexity for a standard cell library from [14, 5]. A different standard cell library
might have slightly different relative sizes, but we believe that the table is a good
approximation for practical purposes. For instance, one can see that since flip
flops are more expensive than building combinatorial logic, a redistribution of
the functionality within the stream cipher can allow further decrease in the size
of the design.

Table 1. Area complexity of CMOS standard cells

Transistors

2-input NAND 4
2-input AND 6
2-input XOR 12
D Flip Flop 26
2:1 Mux 12



There is similarly area differences in the type of storage element like SRAM,
DRAM or ROM used for the implementation. A comparative study of different
memory types can be found in [11] and a short Table.2 is presented here.

Table 2. Relative area complexity of memories

Normalized Transistor count

DRAM 1.5
SRAM 6
ROM 1
EEPROM 2
Flash 1-1.5

3 Power Constraints

Power in modern devices is and will be a major concern, even if cost constraints
may become less important due to decreasing feature sizes. This has been due
to the fact that for mobile applications which run on battery, the technology
for energy storage hasn’t evolved as exponentially as for cell technology. Other
concerns have been with cooling of the chip, which can be more costly than the
manufacturing cost of the chip. For more futuristic applications like RFID pow-
ered by external electro-magnetic (EM) fields or sensor networks by scavenging
energy in the environment for instance through small vibrations, the applications
on them need to run at ultra-low power. We provide here Table 3 which shows
the normalized power consumption of different cells in order to give a rough idea
for the designers of stream ciphers. It should be noted that flip flops require a
clock to drive them, which consumes extra power.

Table 3. Power consumption of 0.18µm CMOS standard cells

Normalized Power

2-input NAND 1
2-input AND 2.14
2-input XOR 3.36
D Flip Flop 22.55
2:1 Mux 2.77

There are also several architectural methods available [2] which can be used
to reduce power. One such method we show here is to scale the voltage and
frequency by parallelizing the architecture. This is essentially an area-power



trade-off. For a CMOS circuit, there are three components to the power dissipa-
tion: dynamic (switching) ,short-circuit and leakage power. Short circuit power
and leakage power depend on the cell technology being used. Short circuit power
can be to some extent reduced by reducing the glitch in the circuit by having
shorter critical paths. But the largest component of the power is the dynamic
power, which for a CMOS circuit with a load capacitance CL is given by

Pdynamic = N(f · CL · V 2
dd)

where f is the clock frequency, Vdd the supply voltage and N the number
of gates switching. Thus power is a quadratic function of the operating voltage.
Reducing voltage is one way to reduce energy but it has to be noted that at lower
voltages, the delay of the CMOS gate increases hence reducing the throughput.
One way to overcome this is to parallelize the structure. We provide here an
example from [2] which shows the gain in the power.

Fig. 1. Original Circuit

Fig. 2. Parallel Implementation

Here a adder-comparator circuit with a power consumption of Pref = frefCrefV 2
ref

in a naive approach is doubled. Thus the resulting circuit as shown in Fig. 2 can
be run at half the original frequency with the same throughput. The voltage can
now be scaled down based on the voltage-delay function of the CMOS technology
(which in the given example scales from 5 to 2.9 V). The effective capacitance of
the circuit increases (also taking into account extra routing) by a factor of 2.15.
Thus the power of the parallel circuit is given by

Ppar = (fpar/2)(2.15Cref )(0.58Vref )2 ≈ 0.36Pref

This assumes that the overhead from other components is not too large.
Designing a stream cipher which has possibilities for parallelization can be

extremely useful not only in terms of power but also for most communication
applications today where the smallest atomic units are 1 byte long. They can



be also less vulnerable to implementation attacks that we discuss later in the
paper.

4 Issues on a Secure Implementation

Cryptographic modules are designed to provide IT security services, e.g. in-
tegrity and confidentiality of application data. For the corresponding security
mechanisms, cryptographic keys are needed which have to be protected them-
selves against unauthorized disclosure and modification. In addition to consid-
ering efficient implementations, it is often even more important to secure the
implementation of the stream cipher against physical attacks. Thus, the stream
cipher shall be implemented both efficiently and securely. In the following, we
collect previous works and aim to come up with some guidelines on preferred
stream cipher constructions from a secure implementation point of view.

Implementation attacks target the physical construction of the stream ci-
pher itself. A general pre-condition is that the attacker has physical access to
the cryptographic device or at least to its near-by environment. We distinguish
active and passive implementation attacks. Active attacks cover a broad range
from low-budget non-invasive fault inductions to the high-end physical pene-
tration and modification of the cryptographic device. Passive attacks leave the
physical implementation intact, but gain additional knowledge just by observing
its physical leakage.

4.1 Passive Implementation Attacks

Side Channel Attacks Side channel information is gained by observing either
the timing, the power dissipation or the EM emanation during the processing of
the cryptographic device. Combinations of these different physical channels are
also feasible. Power analysis as originally introduced in [9] exploits internal data
dependencies of the implementation and has yielded the most efficient methods
for side channel cryptanalysis.

Side channel attacks are well studied for block ciphers and public key schemes,
but there is only little information available on their application against stream
ciphers. As the key generation of stream ciphers typically does not depend on
externally known data and the internal state evolves permanently, a certain
inherent defense against side channel techniques results.

The susceptibility of stream ciphers towards differential side channel analysis
further depends on the protocol used. If the stream cipher is embedded in an
authentication protocol (e.g., using random numbers) differential attacks can be
mounted, as the random numbers involved have to be fed into the key generator.

Previous work on side channel cryptanalysis has focused on software imple-
mentations of the RC4 stream cipher. A sophisticated technique called “Tem-
plate Attack” was introduced in [3] and applied to the RC4. It is claimed that
only one single invocation of the stream cipher using the secret key is needed. For
the preparation it is assumed that the attacker owns an identical programmable



device which is used for a precise characterization of the noise. An experimental
study of template attacks on a micro-controller based implementation of RC4
can also be found in [12].

To the knowledge of the authors, side-channel related publications on im-
plementations of other stream ciphers — especially hardware implementations
based on LFSRs — are not available in the public literature yet. LFSRs are the
basic building blocks of many keystream generators and well-suited for hardware
implementations.

The data dependent part of the power dissipation of an LFSR is assumed
to be composed of two parts: one part that can be modelled by the current
Hamming weight of the LFSR and the other part that depends on the number
of cells changed during a transition. Let (sj,0, sj,1, ..., sj,n−1) be the internal state
s of a n-bit sized LFSR after j clock cycles. The Hamming weight contribution
of the power dissipation is (in a first approximation) proportional to

∑n−1
i=0 sji.

The power contribution resulting from the transition j → j +1 is approximately
proportional to

∑n−1
i=0 (sj,i⊕sj+1,i) =

∑n−2
i=0 (sj,i⊕sj,i+1)+(sj,n−1⊕sj+1,n−1). An

additional power contribution origins from the tapped cells which evaluate the
feedback bit sj+1,n−1. Because of the sequential processing, glitches are likely
to occur along this critical path. Under optimal conditions, it can be further
assumed that various leakage types occur at slightly different positions in time
within a one clock cycle.

As a consequence, significant leakage about the internal state is expected if
extreme values of the Hamming weight or transition count can be observed. The
probability to observe these events by chance during the operation of the stream
cipher is minimized by choosing sufficiently long bit-sized LFSRs. Moreover, if
multiple LFSRs are operated in parallel, the power contribution of one specific
LFSR can hardly be identified.

One remaining critical point is the key initialization sequence if the initial
state of the LFSRs is zero as for instance in the A5/1 cipher. In the initialization
process of the A5/1, one key bit enters all three LFSRs at each clock cycle. If
this sequence is observed, probably the entire sequence of the key bits can be
disclosed.

As result, a general guideline for the cipher design is that the bit-wise key
transfer into LFSRs with a known initialization state should be avoided. A par-
allel loading of multiple key bits is encouraged. If different LFSRs are operated
in parallel, they should be entered by different key bits at the same point in
time.

Another application of the power dissipation leakage concerns clock con-
trolled generators, which induce an irregular motion of the LFSRs depending
on an internal state of the LFSRs. We guess that the overall power dissipation
is different according to the number of LFSRs in operation. If the overall bit-
length of the clocked LFSRs is different, this can offer a possibility to decide
which LFSRs are clocked.

The most promising approach to counteract side channel leakage of hardware
based stream cipher is the usage of special logic styles, as e.g. SABL (see [8]).



4.2 Active Implementation Attacks

Non-invasive Attacks Fault attacks on stream ciphers are thoroughly studied
in [6].

In case of block ciphers and public-key cryptosystems, faults can be detected
by computing the same operation twice or by using the inverse operation. This
is not feasible for stream ciphers. Possible hardware countermeasures include
dual-rail logic styles ([10]) with an alarm mechanism and a redundant design of
the stream cipher including a comparison of the output bits.

Invasive Attacks Invasive attacks target the physical security of the device.
Typical scenarios include penetration and modification. The common aim is to
intercept data at the internal communication lines or to read out memory cells
in order to determine the secret keys stored inside the device.

The internal construction of a secure hardware implementation should avert
these invasive attacks. A prominent example are secure smart-cards which pro-
vide passive protection against physical attacks (‘Tamper Resistance’).

Critical points of a hardware design are connection lines which are used
for the key transfer. If the keying of the stream cipher is done bit by bit, the
implementation can be vulnerable against probing once this position is identified
in the layout. One successful probing on this line would be sufficient to monitor
the entire key.

Constructions which process the majority of key bits sequentially should be
avoided in the implementation. The transfer of key bits should be parallelized
on different lines as much as possible. An alternative hardware countermeasure
is an internal random masking of the key bits processed at gate level.

For the design of stream ciphers it is recommended to avoid one long bit-sized
LFSR and to prefer the use of multiple LFSRs operating in parallel.

5 Conclusion

We introduced some metrics for evaluating the implementation costs for stream
ciphers, and summarized what is known about side channel attacks. We believe
much work can still be done in the area of modern stream cipher implementation.
Here are a few suggestions that we can make:

– Researching and implementing side-channel attacks which are specific for
stream ciphers, such as observing LFSR through side channels.

– Design of stream ciphers at extremely low costs, say a few 100 gates, for
pervasive computing applications.

– Stream ciphers which have internal parallelization for low-power design.

References

1. T. Blum and C. Paar. High radix Montgomery modular exponentiation on recon-
figurable hardware. IEEE Transactions on Computers, 50(7):759–764, July 2001.



2. A. Chandrakasan and R. Brodersen. Low-Power CMOS design. IEEE Press, 1998.
3. S. Chari, J.R. Rao, and P. Rohatgi. Template attacks. In B.S. Kaliski, Ç Koç, and

C. Paar, editors, Cryptographic Hardware and Embedded Systems, volume 2523 of
LNCS, pages 13–28. Springer-Verlag, 2003.

4. H. Eberle. A high-speed DES implementation for network applications. In E. F.
Brickell, editor, Advances in Cryptology — CRYPTO ’92, volume LNCS 740, pages
521–539, Berlin, Germany, August 16–20 1993. Springer-Verlag. Conference Loca-
tion: Santa Barbara, California, USA.

5. J. Grad and J.E. Stine. A standard cell library for student projects. In International
Conference on Microelectronic Systems Education, pages 98–99. IEEE Computer
Society, 2003.

6. J.J. Hoch and A. Shamir. Fault analysis of stream ciphers. In Marc Joye and Jean-
Jacques Quisquater, editors, Chryptographic Hardware and Embedded Systems —
CHES 2004, volume 3156 of LNCS, pages 240–253. Springer-Verlag, 2004.

7. F. Hoornaert, J. Goubert, and Y. Desmedt. Efficient hardware implementation
of the DES. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology —
CRYPTO’84, volume LNCS 196, Santa Barbara, California, USA, August 19–22
1985. Springer-Verlag.

8. I. Verbauwhede K. Tiri. Securing encryption algorithms against dpa at the logic
level: Next generation smart card technology. In C. D. Walter, Ç Koç, and C. Paar,
editors, Cryptographic Hardware and Embedded Systems — CHES 2003, volume
2779 of LNCS, pages 125–136. Springer-Verlag, 2003.

9. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor,
Advances in Cryptology — CRYPTO ’99, volume 1666 of LNCS, pages 388–397.
Springer-Verlag, 1999.

10. S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improving
smart card security using self-timed circuits”. In Proc. 8th IEEE International
Symposium on Asynchronous Circuits and Systems — ASYNC ’02, pages 23–58.
IEEE, 2002.

11. B. Prince. Quality memory blocks-balancing the trade-offs. In IEEE 2000 First
International Symposium on Quality Electronic Design, 2000. ISQED 2000, pages
109–114, San Jose, CA , USA, March 2000.

12. C. Rechberger. Side channel analysis of stream ciphers. Master’s thesis, Institute
for Applied Information Processing and Communications (IAIK), Graz University
of Technology, Inffeldgasse 16a, A-8010 Graz, Austria, 2004.

13. M. Shand and J. Vuillemin. Fast implementations of RSA cryptography. In
E. Swartzlander, Jr., M. J. Irwin, and G. Jullien, editors, Proceedigns of the 11th
IEEE Symposium on Computer Arithmetic (ARITH-11), pages 252–259, 1993.

14. VLSI Computer Architecture, Arithmetic, and CAD Research Group – Department
of Electrical Engineering, IIT, Chicago, IL. IIT Standard Cells for AMI 0.5µm
and TSMC 0.25µm/0.18µm (Version 1.6.0) , 2003. Library and documentation
available from http://www.ece.iit.edu/~vlsi/scells.

15. D.C. Wilcox, L. Pierson, P. Robertson, E. Witzke, and K. Gass. A DES ASIC
Suitable for Network Encryption at 10 Gbps and Beyond. In Ç. Koç and C. Paar,
editors, Workshop on Cryptographic Hardware and Embedded Systems — CHES
1999, volume LNCS 1717, pages 37–48, Worcester, Massachusetts, USA, August
1999. Springer-Verlag.


