
EMBEDDED END-TO-END W IRELESS SECURITY WITH ECDH K EY

EXCHANGE

Sandeep Kumar1,Marco Girimondo1,Andŕe Weimerskirch1,Christof Paar1,Arun Patel2,Arvinderpal S. Wander3

1Communication Security Group,Ruhr-Universität Bochum, Germany
{kumar, girimondo, weika, paar }@crypto.rub.de

2Sun Microsystems Laboratories, California, USA
arun.patel@sun.com

3University of Michigan, USA
awander@umich.edu

ABSTRACT

Sensor networks offer tremendous benefits for the future
as they have the potential to make life more convenient and
safer. For instance, sensors can be used for climate con-
trol to reduce power consumption, for structures such as
bridges to monitor the maintenance status, or for company
badges to locate employees in order to increase productiv-
ity. However, the introduction of such ubiquitous comput-
ing to everyday life also raises privacy concerns. In this
work we present a public-key cryptography implementation
for secure key exchange on low-end wireless devices using
elliptic curves. Our implementation is based on optimal ex-
tension fields (OEF) that are a special type of finite fields
GF (pm). As our platform we chose a Chipcon CC1010
chip which is based on the 8051 architecture and that is es-
pecially suited for secure wireless applications as it has a
built-in radio transceiver as well as a hardware DES en-
gine [2]. We are able to establish a secure end-to-end con-
nection between the sensor and a base station in an accept-
able time of 3 seconds without requiring a cryptographic
coprocessors.

1. INTRODUCTION

Recently, there has been increasing interest in low-cost
radio-enabled devices to be used as sensors and for perva-
sive computing. With the rising number of modern appli-
ances becoming networked with each other, there is a grow-
ing demand for cost-effective wireless networking. The
main disadvantage of using wireless networking is that an
eavesdropper can easily intercept communications. Hence,
security is a major concern in such devices.

Low cost and power constraints have limited crypto-
graphic implementations on these devices to only symmet-
ric key algorithms. While symmetric key algorithms pro-
vide privacy of communication, they require both parties to
know a shared secret a priori. Protocols based on public-

key algorithms such as RSA and DSA [3] exist which can
be used to set up these keys. However, RSA and DSA
are based on modular arithmetic using large operands, and
therefore are very resource intensive both in terms of time
and memory. Consequently, these particular algorithms are
poorly suited for low-end processors such as the 8051. Pub-
lic key techniques also facilitate the use of digital signa-
tures, which provide the security goal of non-repudiation.
The scalability of key distribution is also made possible by
using public key cryptography.

Client


Server


internet


Trusted

Gateway


K
1


K
1


K
2
K
2


Figure 1. Network security based on a trusted
gateway.

The main aim of this work is to prove that public-key
cryptography can indeed be used on low-end 8-bit proces-
sors such that it provides adequate security for establish-
ing the secret keys required for secure wireless connections.
A further objective was to provide end-to-end security be-
tween communicating devices. These goals were met by
leveraging the computational savings provided by Elliptic
Curve Cryptography (ECC). Figure 1 displays a possible
application scenario. There is a client that establishes a se-
cure communication channel to a gateway over a wireless
channel. The gateway itself establishes a secure channel to



a server through an insecure Internet connection such that
finally there is end-to-end security established between the
client and the server by means of the secure gateway.

This paper is structured as follows. In Section 2 we give
an introduction to ECC, and Section 3 describes the Ellip-
tic Curve Diffie-Hellman (ECDH) key exchange. Section 4
describes the communication protocol based on the ECDH
key exchange. Section 5 describes our demonstration ap-
plication, and finally we conclude with results and future
work in Section 6.

2. ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic curve cryptography is a promising branch of
public key cryptography which offers similar security to
other public key algorithms in use today such as RSA but
with smaller key sizes and memory requirements. ECC was
first proposed independently by Koblitz [6] and Miller [8]
in 1985. At present, ECC has been commercially accepted,
and has also been adopted by many standardizing bodies
such as ANSI, IEEE, ISO, and NIST.

ECC operates over points on an elliptic curve defined
over a finite field. It relies on the assumed difficulty of the
elliptic curve discrete logarithm problem (ECDLP), which
is given pointsP andQ = k · P (where· is ascalar point
multiplication) it is computationally intractable to deter-
minek. The elliptic curve point multiplication (which is the
main operation in ECC) can be expressed in terms of arith-
metic operations over the finite field. Thus the efficiency
of the finite field arithmetic, especially the field multiplica-
tion, determines the overall efficiency of the elliptic curve
cryptosystem.

2.1 Finite Field Choice

A finite field is denoted asGF (pm) for p prime andm
a positive integer. There exist finite fields for all primes
p and positive integersm. GF (pm) is isomorphic to
GF (p)[x]/(P (x)), whereP (x) = xm +

∑m−1
i=0 pix

i, pi ∈
GF (p), is a monic irreducible polynomial of degreem.

Various finite fields allow the use of different algo-
rithms for field arithmetic, thus the choices ofp, m, and
P (x) can have a dramatic impact on the cryptosystem per-
formance. In finite fields of a particular form, there are
specialized algorithms which give better performance than
generic algorithms. We choose Optimal Extension Fields
(OEF) [1] as they are computationally more efficient than
other field types offering roughly the same level of secu-
rity. Table 1 [12] displays three fields of similar field order
which implies a similar security strength of the cryptosys-
tem based on these fields. The third column denotes the
number of cycles for one field multiplication which is the
crucial operation. One can see that the OEF displayed in
the third row performs more efficiently than the binary field

displayed in the first row.

Table 1. ECC field performance
Field Field order ] Cycles for multiply

GF (2135) 2135 19,600
GF ((28)17) 2136 7,479

GF ((28 − 17)17) 2134 5,084

2.2. Optimal Extension Fields

In OEF’s,p is of the form2n±c, for n, c positive integers
and log2 c ≤ b 1

2nc. One choosesp of appropriate size to
exploit the multiply instruction available on the 8051 pro-
cessor, i.e.,p ≤ 28. m is chosen such that an irreducible
binomialP (x) = xm−ω exists which speeds up the exten-
sion field modular reduction. The goal is to select parame-
ters which provide adequate security without incurring ex-
cessive computation time. Based on this analysis, we chose
p = 28−17 and the irreducible polynomialP (x) = x17−2,
i.e.,m = 17.

Lenstra and Verheul showed that under certain assump-
tions, 952-bit RSA and DSA systems may be considered
equivalent in security to a 132-bit ECC system [7]. The
field GF ((28 − 17)17) provides a security level of 134 bits
such that the proposed system is far more secure than 512-
bit RSA system which has been popular for smart card ap-
plications. Therefore, our selection of the field order pro-
vides a security level which is appropriate to protect data
for a medium time interval, say one year. This should be
sufficient for most embedded applications.

2.3. Field Arithmetic

The key performance advantage of OEFs is due to fast
modular reduction in the subfield. Given primep = 28−17,
reduction of a double-sized operandc is performed by di-
viding it into two 8-bit words, c = c1 28 + c0, where
c0, c1 < 28. The upper bits ofc are ”folded” into the lower
ones,c = 17c1 + c0 mod (28 − 17), leading to a very ef-
ficient reduction which requires one multiplication by17,
one addition and no division or inversions.

For field multiplication, we observe thatx17 = 2 mod
(x17 − 2). Thus we can expressC(x) = A(x) · B(x) =
ĉ16x

16 + (2ĉ32 + ĉ15)x15 + . . . + (2ĉ18 + ĉ1)x + (2ĉ17 +
ĉ0) mod (x17 − 2) whereĉi =

∑
j+k=i ajbk.

Squaring is similar to multiplication with the advan-
tage that the two operands are same. Therefore theĉi’s
are faster to calculate. Inversion is implemented using
the Itoh-Tsujii algorithm [4] in the sub-fieldGF (p17) as
A−1 = (Ar)−1Ar−1 wherer = (p17 − 1)/(p − 1). Ta-
ble 2 presents the execution time and code size of the field
operations.



Table 2. Field arithmetic performance
Description Operation Time Code size

(µsec) (bytes)
Multiplication A(x)B(x) 5093 5212

Squaring A2(x) 3142 3400
Inversion A−1(x) 24672 neg.

2.3.1 Point Arithmetic

There are two methods for representing points on an ellip-
tic curve: affine coordinates, and projective point coordi-
nates. Projective coordinates are used to save field inver-
sions at the cost of further multiplications. We use affine
point coordinates since the ratio for multiplication time to
inversion time is 1:4.8. IfP = (x1, y1) ∈ GF (pm), then
−P = (x1,−y1). If Q = (x2, y2) ∈ GF (pm), Q 6= −P ,
thenP + Q = (x3, y3), where

x3 = λ2 − x1 − x2 (1)

y3 = λ(x1 − x3)− y1 (2)

λ = {
y2−y1
x2−x1

, if P 6= Q
3x2

1+a
2y1

, if P = Q
(3)

If P = Q we call the operation a point doubling, other-
wise a point addition. For point multiplication we use the
binary double-and-add method as described in [5].

3. ELLIPTIC CURVE DIFFIE -HELLMAN

In the elliptic curve Diffie-Hellman (ECDH) key ex-
change, the two communicating parties serverS and client
C agree beforehand to use the same curve parameters and
base pointG. They each generate their private keysPrS

andPrC , respectively, and the corresponding public keys
PuS = PrS ·G andPuC = PrC ·G.

Both the client and server exchange their public keys,
and each multiplies its private key with the other party’s
public key to derive a common shared secretPrC · PuS =
PrS · PuC = PrS · PrC · G. An attacker cannot deter-
mine this shared secret from the curve parameters,G or the
public keys of the parties as described in Section 2.

4. COMMUNICATION PROTOCOL

Our communication protocol consists of two phases.
The first one is thekey establishment phasewhich is done
initially to exchange the keys. Thereafter innormal mode
application data is transmitted. Figure 2 displays the proto-
col which is described below.

4.1. Key Establishment Phase

The client initiates a connection by relaying aClient
Hello with its pre-computed public keyPuC on the wire-

less channel. The gateway, which is in receive mode, on
receiving the public key passes it to the server through
the wired interface and waits for the server’s public key.
The server daemon, upon receiving the connection request
sends aServer Hellowith its public keyPuS to the gate-
way, and then starts computing the shared secret from the
received public keyPuC and the server’s secret keyPrS .

MSecret = PrS · PuC (4)

The gateway transmits the server’s public key to the client
and waits for the data transmission to begin. The client, on
receiving the server’s public key (Puser) from the gateway,
computes themaster secret.

MSecret = PrC · PuS (5)

The client and server now have the same shared master se-
cret MSecretof 134 bits using the Elliptic Curve Diffie-
Hellman key exchange. The key for the symmetric DES
operation is then derived from this 134-bit secret.

Client
 Gateway
 Server


Client Hello

Pu
cli
 Rx 
Pu
cli


Rx 
Pu
cli


Server Hello

Pu
ser


Write 
Pu
cli


Read 
Pu
ser


Tx 
Pu
ser

Rx 
Pu
ser


Perform ECDH

K
m
=
Pr
cli
*
Pu
ser


Key exchange

complete


Application Data

DES encrypted


UART


UART


wireless


wireless


Perform ECDH

K
m
=
Pr
ser
*
Pu
cli


Application Data

DES encrypted


Figure 2. Key exchange protocol.

4.2. Normal Mode

Once the keys are set up, the client and the server
can transmit application data encrypted with Triple-DES
in CFB mode. To close the connection securely, we use
a close connectioncontrol message which deletes the pre-
viously generated keys.

5. DEMONSTRATION I MPLEMENTATION

The hardware platform chosen for the implementation is
the Chipcon CC1010 chip [2], an 8-bit 8051 processor core
with a built-in radio transceiver and hardware DES engine.
The CC1010 has been optimized to execute one instruc-
tion cycle every four clock cycles, which offers roughly 2.5
times the performance of the original Intel 8051. It is a



very power efficient device which allows for use in mobile
devices. We use two CC1010 evaluation modules for our
setup. One of them is used as aclient, which is connected
to a portable magnetic stripe reader, similar to a Point-of-
Sale terminal. The reader presents the encoded data through
an RS-232 serial link to the CC1010. The other evaluation
module is used as agateway. It listens to the wireless chan-
nel and transmits the data to a PC connected through a RS-
232 serial link. The client device operates on three 1.5V
AA batteries, and communicates with the server through
the gateway on a radio frequency of 868Mhz.

The CC1010 contains 32 kilobytes of flash memory for
storing programs, 2048 bytes of SRAM external to the
8051 core, and 128 bytes of internal SRAM. Due to the
extreme limits in terms of memory capacity and process-
ing power, ECC was implemented in assembly for effi-
ciency. The wireless communication protocol was written
in C and cross-compiled using Small-Devices C Compiler
(SDCC) [10] tools. On the server side, ECC algorithms
were implemented with OpenSSL [9] and the Number The-
ory Library (NTL) [11].

An exchange begins when a user swipes a card with a
magnetic stripe, such as a credit card, on the client de-
vice. The client first saves the data encoded on the mag-
netic stripe and then initiates the key exchange protocol
described in Section 4. After the 134-bit shared secret is
established, we use the first 112 bits as the key for the
Triple-DES engine. The card data is then encrypted with
Triple-DES in CFB mode on the client, and decrypted and
displayed on the server side. The wireless range of this
demonstration exceeds 100ft indoors. The client can oper-
ate on the same set of batteries for at least 10 hours contin-
uously, and longer battery life can be achieved with addi-
tional power management software.

6. RESULTS AND FUTURE WORK

In this paper we have shown that security protocols
based on public key cryptographic algorithms are possible
on low-end wireless devices without the extra cost of addi-
tional hardware. The code size of the elliptic curve point
multiplication library is 13.5 kilobytes, while the overall
demonstration program occupies 22.5 kilobytes. The total
RAM used also includes variables for the field arithmetic
operations, storage of temporary points and the secret key
(an integer coefficient), and buffers for the communication
protocol. The breakdown of memory usage is described in
Table 3.

It takes 2.99 seconds to complete an elliptic curve point
multiplication on the Chipcon platform. The overall ses-
sion setup time for the secure connection takes 3.15 sec.
Table 4 furthermore displays the execution time for a point
doubling and a point addition operation.

Table 3. Memory map for CC1010
Type Size (bytes) Function
Code 13.5k ECC

9k RF protocol
Internal RAM 128 finite field arithmetic
External RAM 406 temporary points

34 coefficients

Table 4. ECC point arithmetic performance
Operation Time (msec)

Point Addition 14.049
Point Doubling 15.395

Point Multiplication 2999.8

The time taken for setting up the connection is accept-
able, considering the additional security it enables. A work-
ing model of a wireless card reader was implemented to
prove the concept in practice.

In future versions we will add a hash function to change
the keys regularly, or to derive session keys of a master se-
cret key to allow a rapid reconnection. Certified public keys
are also required in future implementations to avoid man-
in-the-middle attacks. Furthermore, we plan to implement a
digital signature scheme based on our elliptic curve library.

REFERENCES

[1] D. Bailey and C. Paar. Efficient arithmetic in finite field
extensions with application in elliptic curve cryptography.
Journal of Cryptology, 14, 2001.

[2] Chipcon.SmartRF. CC1010 PRELIMINARY Datasheet (rev.
1.2), 2003.

[3] A. O. Freier, P. Karlton, and P. C. Kocher.The SSL Proto-
col Version 3.0. Transport Layer Security Working Group
INTERNET-DRAFT, November 1996.

[4] T. Itoh and S. Tsujii. A fast algorithm for computing multi-
plicative inverses inGF (2m) using normal bases.Informa-
tion and Computation, 78:171–177, 1988.

[5] D. E. Knuth. The Art of Computer Programming. Volume
2: Seminumerical Algorithms. Addison-Wesley, Reading,
Massachusetts, USA, 2nd edition, 1981.

[6] N. Koblitz. Elliptic curve cryptosystems.Mathematics of
Computation, vol. 48:203–209, 1987.

[7] A. Lenstra and E. Verheul. Selecting cryptographic key
sizes. In H. Imai and Y. Zheng, editors,PKC 2000, volume
LNCS 1751, Berlin, 2000. Springer-Verlag.

[8] V. S. Miller. Use of elliptic curves in cryptography.
CRYPTO ’85, pages 417–426, 1986.

[9] Openssl. available at http://www.openssl.org/.
[10] Sdcc - small device c compiler. available at

http://sdcc.sourceforge.net/.
[11] V. Shoup. Ntl. available at http://www.shoup.net/ntl/.
[12] A. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryp-

tography on smart cards without coprocessors. InCARDIS
2000, Bristol, UK, September 20–22 2000. Kluwer.


