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Abstract. Recently, there has been a lot of interest on cryptographic
applications based on fields GF(p™), for p > 2. This contribution presents
GF(p™) multipliers architectures, where p is odd. We present designs
which trade area for performance based on the number of coefficients
that the multiplier processes at one time. Families of irreducible polyno-
mials are introduced to reduce the complexity of the modulo reduction
operation and, thus, improved the efficiency of the multiplier. We, then,
specialize to fields GF(3™) and provide the first cubing architecture pre-
sented in the literature. We synthesize our architectures for the special
case of GF(3°7) on the XCV1000-8-FG1156 and XC2VP20-7-FF1156
FPGAs and provide area/performance numbers and comparisons to pre-
vious GF(3™) and GF(2™) implementations. Finally, we provide tables
of irreducible polynomials over GF'(3) of degree m with 2 < m < 255.

1 Introduction

Galois field arithmetic has received considerable attention in recent years due
to their application in public-key cryptography schemes and error correcting
codes. In particular, two public-key cryptosystems based on finite fields stand
out: elliptic curve (EC) cryptosystems, introduced by Miller and Koblitz [24, 19],
and hyperelliptic cryptosystems, a generalization of elliptic curves introduced by
Koblitz in [20]. Both, prime fields and extension fields, have been proposed for
use in such cryptographic systems. However, until a few years ago the focus was
mainly on fields of characteristic 2 due to the straight forward manner in which
elements of GF(2) can be represented, i.e., they can be represented by the logical
values “0” and “1”. For these types of fields, both software implementations and
hardware architectures have been studied extensively. In recent years, GF(p™)
fields, where p is odd, have gained interest in the research community. Mihalescu
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[28] and independently Bailey and Paar [3, 4] introduced the concept of Optimal
Extension Fields (OEFs) in the context of elliptic curve cryptography. OEFs
are fields GF(p™) where p is odd and both p and m are chosen to match the
particular hardware used to perform the arithmetic, thus allowing for efficient
field arithmetic. The treatment in [4, 28] and that of other works based on OEFs
has only been concerned with efficient software implementations.

In [21,32], GF(p™) fields are proposed for cryptographic purposes where p
is relatively small. [21] describes an implementation of ECDSA over fields of
characteristic 3 and 7. The author in [32] describes a method to implement ellip-
tic curve cryptosystems over fields of small odd characteristic, only considering
p < 24 in the results section. More recently, Boneh and Franklin [8] introduced
an identity-based encryption scheme based on the use of the Weil and Tate pair-
ings. Similarly, [7] described a short signature scheme based on the Weil and Tate
pairings. Other applications include [17,34]. All of these applications consider
elliptic curves defined over fields of characteristic 2 and 3. Because character-
istic 2 field arithmetic has been extensively studied in the literature, authors
have concentrated the efforts to improve the performance of systems based on
characteristic 3 arithmetic*. For example, [5, 10] describe algorithms to improve
the efficiency of the pairing computations. [10] also introduces some clever tricks
to improve the efficiency of the underlying arithmetic in software based solu-
tions. [29] treats the hardware implementation of fields of characteristic 3. Their
design is only geared towards fields of characteristic 3. Moreover, it is acknowl-
edged that the element representation makes their architectures unsuitable to
take advantage of operations such as cubing (i.e. a cubing will only be as fast as
a general multiplication, while in other implementations cubing could be more
efficient) which are important in Tate pairing computations.

1.1 Owur Contributions

Given the research community’s interest on cryptographic systems based on
fields of odd characteristic and the lack of hardware architectures for general
odd characteristic fields, we try to close this gap. Our approach is different from
previous ones, in that, we propose general architectures which are suitable for
fields GF(p™) with p odd. In particular, we generalize the work in [33] to fields
GF(p™), p odd. We, then, study carefully the case of GF'(3™) due to its crypto-
graphic significance. In addition, we focused on finding irreducible polynomials
over GF(3) to improve the performance of the multiplier. For the problem of
efficient GF(p) arithmetic, we refer the reader to [9, 30, 13].

The remaining of this contribution is organized as follows. In Section 2 we sur-
vey previous GF'(p™) architectures and discuss certain multiplier architectures
for GF(2%) type fields, which we generalize for the GF(p™) case in Section 4. In

4 The use of characteristic 3 fields is preferred in some applications due to the im-
proved bandwidth requirements implied by the security parameters. For example,
signatures resulting from Pairing cryptography will be smaller in characteristic 3
than in characteristic 2.
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Section 4, we also study both the time and area complexities of the multipliers
and give two theorems which help us in choosing irreducible polynomials that
will minimize the area and delay of the resulting multipliers. Finally, Section 5
specializes the results of the previous section to the case of GF(3"™) fields which
recently have become of great interest in the research community. We also de-
scribe a prototype implementation of our architectures for three different fields
on two FPGAs. We also provide tables of irreducible polynomials over GF(3)
for degrees between 2 and 255. We end this contribution with some conclusions.

2 Related Work

In contrast to the GF(p) case, there has not been a lot of work done on GF(p™)
architectures. Our literature search yielded [31] as the only reference that ex-
plicitly treated the general case of GF(p™) multipliers, p odd®. In [31], GF (p™)
multiplication is computed in two stages. First the polynomial product is com-
puted modulo a highly factorizable degree S polynomial, M (x), with S > 2m—1.
The product is, thus, computed using a polynomial residue number system. The
second step involves reducing modulo the irreducible polynomial p(x) over which
GF(p™) is defined. The method, however, does not seem to apply to field sizes
common in cryptographic applications due to certain constraints on the size of
m. In particular, for p = 3, there does not exist a suitable M (z) polynomial.

The authors in [25] consider multiplier architectures for composite fields of
the form GF((3")3) using Multi-Value Logic (MVL) and a modified version of
the Karatsuba algorithm [18] for polynomial multiplication over GF((3")3). El-
ements of GF((3™)3) are represented as polynomials of maximum degree 2 with
coefficients in GF(3™). Multiplication in GF'(3™) is achieved in the obvious way.
Karatsuba multiplication is combined with modular reduction over GF((3™)™)
to reduce the complexity of their design. Because of the use of MVL no discus-
sion of modulo 3 arithmetic is given. The authors estimate the complexity of
their design for arithmetic over GF((3%)3) as 56 mod-3 adders and 67 mod-3
multipliers. To our knowledge, [29] is the first work that describes GF(3™) ar-
chitectures for applications of cryptographic significance, thus we describe it in
some detail. The authors describe a representation similar to the one used by
[10] to represent their polynomials. They combine all the least significant bits of
the coefficients of an element, say A, into one value and all the most significant
bits of the coefficients of A into a second value (notice the coefficients of A are
elements of GF'(3) and thus 2 bits are needed to represent each of them). Thus,
A = (ay,ap) where a; and ag are m-bit long each. Addition of two polynomials
A = (a1,a9), B = (b1,by) with C = (¢1,¢9) = A+ B is achieved as:

t:(al \/bo)@(ao\/bl), Clz(ao\/bo)@t, 62:(0,1Vb1)@t (1)

where V and & mean the logical OR and exclusive OR operations, respectively.
The authors of [29] notice that subtraction and multiplication by 2 are equiva-

5 There has been a lot work done, however, on finite field architectures for character-
istic two fields.
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lent in characteristic 3 and that they can be achieved as 2- A = 2 (al,a0) =
—A = —(al,a0) = (a0, al). Multiplication is achieved in the bit-serial manner,
by repeatedly shifting the multiplier down by one bit position and shifting the
multiplicand up by one bit position. The multiplicand is then added or sub-
tracted depending on whether the least significant bit of the first or second
word of the multiplier is equal to one. They notice that with this representation
a cubing operation is only as fast as a general multiply, whereas, using other
implementation methods the cubing operation is much faster. Finally, [29] also
discuss the implementation of multiplication in GF((3™)%) using the irreducible
polynomial Q(y) = y%+y+2. They use the school book method to multiply poly-
nomials of degree 5 with coefficients in GF(3™) and then reduce modulo Q(y)
using 10 additions and 4 doublings in GF(3™). They provide timings which we
further discuss in Section 6.2.

In [33] a new approach for the design of digit-serial/parallel GF(2%) mul-
tipliers is introduced. Their approach combines both array-type and parallel
multiplication algorithms, where the digit-type algorithms minimize the latency
for one multiplication at the expense of extra hardware inside each digit cell.
In addition, the authors consider special types of polynomials which allow for
efficiency in the modulo p(z) reduction operation. These architectures are gen-
eralized in Section 4 to the GF(p™) case, where p is odd.

3 Mathematical Background

For a thorough introduction to finite fields, we refer the reader to [22]. Here,
we briefly review the theory that we will need to develop the architectures of
this paper. In the following, we will consider the field GF(p™) generated by an
irreducible polynomial p(z) = 2™+ P(z) = .Z‘m—i-zyigl piz’ over GF(p) of degree
m. Let « be a root of p(x), then we can represent A € GF(p™) in polynomial
basis as A(a) = Z?:Ol a;a', a; € GF(p). Notice that by assumption p(a) = 0
since « is a root of p(x). Therefore,

o = —P(a) = i(fpi)oz" (2)

i=0

gives an easy way to perform modulo reduction whenever we encounter powers
of « greater than m — 1.

In what follows, it is assumed that A, B,C € GF(p™), with A = Z;Z_Ol a;at,
B = Z;igl biot, C = Z?igl c;at, and a;,b;,¢; € GF(p). Then, addition in
GF(p™) can be achieved as shown in (3)

C(a) = A(a) + B(a) = . (a; +b;)a’ (3)

i

3

Il
<

where the addition a; + b; is done in GF(p). We write the multiplication of
two elements A, B € GF(p™) as C(a) = Z?;Jl cia® = A(a) - B(a), where the
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multiplication is understood to happen in the finite field GF(p™) and all of,
with ¢ > m can be reduced with (2). Much of the remaining of this paper is
devoted to efficient ways to perform multiplication in hardware. We abuse our
notation and throughout the text we will write A mod p(a) to mean explicitly
the reduction step described previously. Finally, we refer to A as the multiplicand
and to B as the multiplier.

4 General Architectures for GF(p™) Arithmetic

This section is concerned with hardware architectures for addition and multipli-
cation in GF(p™). Inversion can be performed through the Euclidean algorithm
or by exponentiation based techniques (see for example [12]) and we do not treat
it any further in this paper.

4.1 Adders

Addition in GF(p™) is performed according to (3). A parallel adder requires m
GF(p) adders and its critical path delay is one GF'(p) adder.

4.2 Multipliers

There are three different types of architectures used to build GF(p") multipliers:
array-, digit-, and parallel-multipliers [33]. Array-type (or serial) multipliers pro-
cess all the coefficients of the multiplicand in parallel in the first step, while the
coeflicients of the multiplier are processed serially. Array-type multiplication can
be performed in two different ways, depending on the order in which the coeffi-
cients of the multiplier are processed: Least Significant Element (LSE) first mul-
tiplier and Most Significant Element (MSE) first multiplier not described here
because of lack of space. Digit-multipliers are also divided in Most Significant
and Least Significant Digit-Element first multipliers, depending on the order in
which the coefficients of the polynomial are processed. Parallel-multipliers have
a high critical path delay but only require one clock cycle to complete a whole
multiplication. Thus, parallel-multipliers exhibit high throughput and they are
best suited for applications requiring high-speed and relatively small finite fields.
However, they are expensive in terms of area when compared to serial multipliers
and thus most of the time prohibitive for cryptographic applications. We don’t
discuss parallel-multipliers any further in this paper.

Least Significant Element (LSE) First Multiplier. The LSE scheme pro-
cesses first coefficient by of the multiplier and continues with the remaining
coefficients one at the time in ascending order. Hence, multiplication according
to this scheme can be performed in the following way:

C = AB mod p(a) = bpA + by (Aa mod p(a)) + ... + b1 (Aa™ " mod p(a))
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Algorithm 1 LSE Multiplier

Require: A = ;7;61 a;e, B = :Z)l b, where a;,b; € GF(p)
Ensure: C=A-B = Z:i_ol c;a, where ¢; € GF(p)
C—0
fori=0tom—1do
C—bA+C
A — Aa mod p(«)
end for
Return (C)

The accumulation of the partial product has to be done with a polynomial
adder. This multiplier computes the operation according to Algorithm 1. The
adapted substructure sharing technique [16] can be used to compute the LSE
multiplication in a more efficient way, if the LSE multiplier is used as building
block for a larger system, like a system with broadcast structure.

Reduction mod p(a). In LSE multipliers the quantity Wea, where W(a) =
Z?;Bl w;a’ € GF(p™), has to be reduced modp(c). Multiplying W by a,

m—1 m—2

Wa = E w;a = W 1a™ + E w;at Tt
i=0 i=0

Using (2) and re-writing the index of the second summation, Wa modp(a) can
then be calculated as follows:

m—1

Wa mod p(a) = (~potwm_1) + 3" (wi_s — pitm_1)a (4)
i=1

where all coefficient arithmetic is done modulo p. Using (4) we can write expres-
sions for A and C' in Algorithm 1 at iteration i as follows:

m—1 m—1
C =3 Vad = A0 + 0D = 37 (00l + Vo,
=0 =0
) m—1 ) . ) m—1 ) ) .
A® = Z a;z)oﬂ = A0 D = (—poal V) + (ay__ll) _Pjaf;:ll))aj
=0 j=1

with C(=1 = 0 and A" = A. As a final remark, notice that if you initialize
C to a value different from 0, say I, then Algorithm 1 computes C = A- B +
I mod p(«). This multiply-accumulate operation turns out to be very useful in
elliptic curve systems and it is obtained at no extra cost.

Area/Time Complexity of LSE Multipliers. LSE multipliers take m itera-
tions to output the product C = A- B mod p(«). In each iteration, the following
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operations are performed: 1 multiplication of a GF(p) element by a GF(p™)
element (requires m GF(p) multipliers), 1 GF(p™) addition (requires m GF(p)
adders), 1 multiplication by « (implemented as a GF(p) coeflicient shift), and 1
modulo p(«) reduction. This last operation could be implemented according to
(4), and thus, it would require (r — 1) GF(p) multipliers and (r — 2) adders for a
fixed r-nomial (where r is the number of non-zero coefficients in the irreducible
polynomial p(z)). However, it could be desired to load the modulus on demand,
in which case one would need m GF(p) multipliers and (m — 1) adders.

Both the area and time complexities of Algorithm 1 are summarized in Ta-
ble 1 in terms of GF(p) adders and multipliers, for two types of irreducible
polynomials. This unusual measure is independent of technology and thus most
general. One immediate advantage of estimating area in terms of GF(p) adders
(multipliers) is that we don’t need to care about the way these are implemented.
In particular, there are many implementation choices depending on your applica-
tion and design criteria [9, 13, 30]. Section 6.1 gives specific complexity numbers
for an FPGA implementation of GF(3™) arithmetic in terms of both Look-Up
Tables® (LUTS), also known as Configurable Logic Blocks (CLBs), and flip-flops
(FF), thus taking into account the way GF'(p) arithmetic is implemented on
the target technology. In Table 1, ADD and MUL refer to the area and delay

Table 1. Area complexity and critical path delay of LSE multiplier.

Irreducible Area Critical Path Latency
polynomial Complexity Delay (# clocks)
r-nomial |(m +r —2) ADD + (m+r —1) MUL|1 ADD + 1 MUL m
General (2m — 1) ADD + 2m MUL 1 ADD + 1 MUL m

of a GF(p) adder and multiplier, respectively. We have not taken into account
the delays or area requirements of storage elements (such as those needed to
implement a shift register) or routing elements (such as those used for inter-
connections in FPGAs). In addition, we do not make any distinction between
general and constant GF'(p) multipliers, i.e., we assume their complexities are
the same. Finally, general irreducible polynomials refer to the case in which you
want to be able to change the irreducible polynomial on demand.

Digit-Serial/Parallel Multipliers. LSE multipliers process the coefficients
of A in parallel, while the coefficients of B are processed serially. Hence, these
multipliers are area-efficient and suitable for low-speed applications. Digit mul-
tipliers, introduced in [33] for fields GF(2*), are a trade-off between speed, area,
and power consumption. This is achieved by processing several of B’s coefficients
at the same time. The number of coefficients that are processed in parallel is de-
fined to be the digit-size and we denote it by D. For a digit-size D, we can denote

5 Look-Up Tables are the basic building blocks of most common FPGAs [1, 2, 35].
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by d = [m/D] the total number of digits in a polynomial of degree m — 1. Then,

. . d—1 ;
we can re-write the multiplier as B =) ;" B;aP?, where

o)

J

Il
=

and we assume that B has been padded with zero coefficients such that b; = 0
form—1<i<d-D (i.e. B’ssize is d - D coefficients but deg(B) < m). Hence,

d—1
C = AB mod p(a) = AZ B;aP? mod p(a) (6)

i=0
In the following, a generalized digit-serial/parallel multiplication algorithm is
introduced. We named this algorithm Least Significant Digit-Element first mul-
tiplier (LSDE), where the word element was introduced to clarify that the digits
correspond to groups of GF(p) coeflicients in contrast to [33] where the digits
where groups of bits. The LSDE is an extension of the LSE multiplier. Using
(6), the product C' = AB mod p(«) in this scheme can be calculated as follows

C = [BoA+ By (Aa” mod p(a))+. ..+ By_1(AaP @2 aP mod p(a))] mod p(«)

This is summarized in Algorithm 2. The adapted substructure sharing technique

Algorithm 2 LSDE Multiplier

Require: A = Zj;gl a;a’, where a; € GF(p), B = Zi[:%o]fl B;a??, where B; is as
defined in (5) ’
Ensure: : C=A-B= Z:’;Bl cia', where ¢; € GF(p)

C—0
for i =0to [5] —1do
C+— BA+C
A — AaP mod p(a)
end for

Return (C mod p(a))

can also be used for the LSDE, like in the case of the LSE multiplier. We end this
section by noticing that, as in Algorithm 1, if C is initialized to I in Algorithm 2,
we can obtain as an output A - B + I mod p(«) at no additional (hardware or
delay) cost. This operation, known as a multiply/accumulate operation, is very
useful in elliptic curve based systems.

Reduction mod p(«a) for Digit Multipliers. In LSDE multipliers the prod-
uct WaP” mod p(a) occurs. As in the LSE multiplier case, one can derive equa-
tions for the modular reduction for particular irreducible p(«) polynomials. How-
ever, it is more interesting to search for polynomials that minimize the complex-
ity of the reduction operation. In coming up with these optimum irreducible
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polynomials we use two theorems from [33], adapted to the case of GF(p™)
fields with p odd.

Theorem 1. Assume that p(a) = a™ + pra¥ + Zf;é p;ad, with k < m. For
t <m—1—k, the degree of ™ Tt can be reduced to be less than m in one step
with the following equation:

k—1
o™+ mod p(a) = —pra™*t — (Y pjadtt) (7)
j=0

Theorem 2. For Digit multipliers with digit-element size D, when D < m — k
the degree of the intermediate results in Algorithm 2 can be reduced to be less
than m in one step.

Theorems 1 and 2, implicitly say that for a given irreducible polynomial p(a) =
a™ + prak + Z?;é p;ad, the digit-element size will depend on the value of k.

Area/Time Complexity of LSDE Multipliers. Before estimating the com-
plexity of the LSDE multiplier, it is helpful to obtain equations to describe the
values of A and C at iteration ¢ in Algorithm 2. Thus, assume that B; is as in
(5), p(a) as in Theorem 1, A = 37 " a;a’, and D < m — k (Theorem 2). Then,

c® = p L ol-1) = Z (d;i) + Cgi_l)) ol (8)
7=0
. m—1 ] ) k D-1 , ‘
A(l) — ay:[l))a.] + Z <_ps . a’grnlm)fD> adts (9)
j=D s=0 j=0
where C(-1) =0, ACY) = A and
) m+D—2 ) ) ) m—1D-—1 ) )

D — Z d;l)aj =B, - AlG=1) (ay*l) . bDi+k> ol Tk (10)

j=0 7=0 k=0

Now it is easy to see that in each iteration one requires mD multipliers in parallel
and Y7 i+ (D-1)+ X7 P (m+ D—2—j) = (D—1)(m—1) adders.
Therefore, according to (8), we only need (D —1)(m —1)+m+ D —1=mD
adders to compute C'¥). Using a ripple adder architecture, the critical path is
given by D — 1 adder delays from the computation of D), one adder delay from
the computation dy) —1—05-1_1) in (8), and one multiplier. We notice, however, that
it is possible to improve the critical path delay of the LSDE multiplier by using
a binary tree of adders”. Using this technique one would reduce the length of the
critical path from D GF(p) adders and one GF(p) multiplier to [log,(D + 1)]
adders and one multiplier. We use this, as our complexity for the critical path.

" Binary trees have been used both in [33] and [26] in the context of G F(2™) arithmetic
to reduce delay and power consumption.
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The computation of (9) requires only D(k + 1) multipliers (notice that the
second term of (9) looks exactly the same as D) in (10), except that the limits
in the summation are changed) and at most Dk adders. In the case in which
p(a) is an r-nomial, the complexities reduce to (r — 1) D multipliers and at most
(r —2)D adders (notice that the first summation in (9) starts at j = D, thus,
the first D coefficients resulting from the second summation do not need to be
added to anything). We say at most because depending on the values of D and
k, some adders may be saved. These results are summarized in Table 2

Table 2. Area complexity and critical path delay of LSDE multiplier.

Irreducible Area Critical Path Latency

polynomial Complexity Delay (# clocks)

r-nomial |(m 47 —2)D ADD +|[log,(D +1)] ADD +| [5]
(m+r—1)D MUL 1 MUL

General (m+k)D ADD 4 |[logy,(D +1)] ADD 4| [%F]
(m+k+1)D MUL + 1 MUL

Table 2 makes the same assumptions as for the LSE case, i.e., ADD and
MUL refer to the area and delay of a GF(p) adder and multiplier, respectively,
delay or area of storage elements are not taken into account, and no distinction
is made between general and constant GF'(p) multipliers. We end by noticing
that an LSDE multiplier with D = 1 is equivalent to an LSE multiplier. Our
complexity estimates verify this if you let D =1 and k = m — 1 in Table 2.

4.3 Comments on Irreducible Polynomials for GF(p™)

From Theorems 1 and 2, it is obvious that choosing an irreducible polynomial
should be carefully done. For fields GF (p™) with odd prime characteristic it is
often possible to choose irreducible binomials p(«) = ™ — w, w € GF(p). This
is particularly interesting since binomials are never irreducible in characteristic
2 fields. Another interesting property of binomials is that they are optimum
from the point of view of Theorem 1. In particular for any irreducible binomial
pla) = 2™ —w, k = 0 and D < m in Theorem 2, which means that even
in the degenerate case where D = m (i.e. a parallel multiplier) one is able to
perform the reduction in one step. In addition, reduction is virtually for free,
corresponding to just a few GF(p) multiplications (this follows from the fact
that o™ = w). A specific sub-class of these fields where ¢ is a prime of the
form ¢ = p = 2" — ¢, ¢ “small”, has recently been proposed for cryptographic
applications in [4]. We notice that the existence of irreducible binomials has been
completely established as Theorem 3 shows®.

Theorem 3. [22] Let m > 2 be an integer and w € Fy. Then the binomial
™ — w s irreducible in Fylz] if and only if the following two conditions are

8 Reference [22] is used here as a convenient reference for well established results.
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satisfied: (i) each prime factor of m divides the order e of w in Fy, but not
(g—1)/e; (ii) ¢ =1 mod 4 if m = 0 mod 4.

When irreducible binomials can not be found, one searches in incremental order
for irreducible trinomials, quadrinomials, etc. In [15] von zur Gathen and Nocker
conjecture that the minimal number of terms o,(m) in irreducible polynomials
of degree m in GF(q), g a power of a prime, is for all m > 1, o2(m) < 5 and
o4(m) < 4 for ¢ > 3. This conjecture has been verified for ¢ = 2 and m < 10000
[6,11,15,36-38] and for ¢ = 3 and m < 539 [14].

By choosing irreducible polynomials with the least number of non-zero coef-
ficients, one can reduce the area complexity of the LSDE multiplier (this follows
directly from Table 2). We point out that by choosing irreducible polynomials
such that their non-zero coefficients are all equal to p — 1 one can further reduce
the complexity since all the multiplications by —ps in (9) reduce to multiplica-
tion by 1. Notice that there is no existence criteria for irreducibility of trinomials
over any field GF(p™). The most recent advances in this area are the results of
Loidreau [23], where a table that characterizes the parity of the number of fac-
tors in the factorization of a trinomial over GF(3) is given, and the necessary
(but not sufficient) irreducibility criteria for trinomials introduced by von zur
Garten in [14]. Neither reference provides tables of irreducible polynomials.

5 Case Study: GF(3™) Arithmetic

FPGAs are reconfigurable hardware devices whose basic logic elements are Look-
Up Tables (LUTs), also called Configurable Logic Blocks (CLBs), flip-flops
(FFs), and, for modern devices, memory elements [1, 2, 35]. The LUTSs are used
to implement Boolean functions of their inputs, that is, functions traditionally
implemented with logic gates. In the particular case of the XCV1000E-8-FG1156
and the XC2VP20-7-FF1156, their basic building blocks are 4-input bits/1-
output bit LUTSs. This means that all basic arithmetic operations in GF(3) (add,
subtract, and multiply) can be done with 2 LUTSs, where each LUT generates
one bit of the output.

5.1 Cubing in GF(3™)

It is well known that for A € GF(p™) the computation of AP is linear. In the
particular case of p = 3, we can write the frobenius map as:

m—1 3 m—1
A3 = (Z aia’) mod p(a) = Z a;a® mod p(«) (11)
i=0 =0

Equation (11) can in turn be written as the sum of three terms (where we have
re-written the indices in the summation):

3(m—1)
A3 = Z a%ai mod p(a) =T + U + V mod p(«) (12)

=0
1=0 mod 3
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m—1 2m—1 3(m—1)
= E aia’ | + E aia’ | + E a;a’ | mod p(a)
3 3 3
1=0 i=m i=2m
i=0 mod 3 i=0 mod 3 i=0 mod 3

Notice that only U and V need to be reduce mod p(«). We further assume that
p(a) = 2™ + pyat + po with ¢ < m/3. This assumption is valid in terms of the
existence of such irreducible trinomials as shown in Section 5.2. Thus,

2m—1 2m—1
_ e _ Ci=m t
U= Z asa mod p(a) = Z aia ( e po) mod p(«)
'iEOIZm”Zd 3 iES:mTZd 3
3(m—1) 3(m—1)
_ . _  i—2m 2t t
V= Z a;a’ mod p(a) = Z aia (" — pipoc’ + 1) mod p(«)
i=2m i=2m
=0 mod 3 =0 mod 3

where we have made use of the fact that (—p;al — po)? = (a?* — pypoat + 1) in
GF(3). It can be shown that U and V can be reduced to be of degree less than
m in one extra reduction step. To estimate the complexity of this cubing circuit,
we assume that p(a) is a fixed irreducible trinomial with ¢ < m/3 i.e., that
multiplications in GF(3) (for example multiplying by —p:pg) can be handled by
adders and subtracters. Then, it can be shown that one needs in the order of
2m adders/subtracters to perform a cubic operation in GF(3™).

5.2 Irreducible Polynomials over GF(3)

Following the criteria of Section 4.3 for choosing irreducible polynomials, we tried
to find irreducible binomials first. Unfortunately, the only irreducible binomial
over GF(3) is 2% + 1, thus we considered irreducible trinomials. Notice that
™ + x' + 1 is never irreducible over GF(3) since 1 is always a root of it. Thus,
we only searched for irreducible trinomials of the following forms: z™ — x* — 1
or 2™+ 2t T 1. For 2 < m < 255, we exhaustively searched for these trinomials
(see Tables 6, 7, and 8 in Appendix A). There are only 23 degrees m in the
range above for which we were unable to find trinomials (which agrees with the
findings in [14]) and thus quadrinomials can be found. Of these quadrinomials
only 4 correspond to m prime (149, 197, 223, 233). Prime m is the most commonly
used degree in cryptographic applications. We notice that of the 50 primes in
the above range which had trinomials, we were not able to find trinomials with
t < m/3 for 9 of them (18 %).

6 GF(3™) Prototype Implementation and Comparisons

Figure 1 shows a block diagram of the prototyped arithmetic unit (AU). Notice
that in Figure 1, all bus-widths correspond to how many GF(3) elements can
be carried by the bus, i.e., if we write m, then it is understood that the bus
is 2m bits wide. The AU consists of an LSDE multiplier and a cubing circuit.
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Fig.1. GF(3™) Arithmetic Unit Architecture

The multiplier and the cubing circuit support the computation of field additions,
squares, multiplications, and inversions. For addition and subtraction we take
advantage of the multiply /accumulate capabilities of the LSDE multiplier and
cubing circuit. In other words, the addition C' = A+ B is done by first computing
A-1 and then adding to it the product B-1. This takes two clock cycles. However,
if operand A is already in the accumulator of the multiplier one can compute
C = B -1+ A in one clock. This eliminates the need for an adder. Subtractions
are computed in a similar manner, i.e., C = A— B is done by first computing A-1
and then adding to it the product (—1) - B or alternatively as C' = (1) - B+ A.

AU prototypes were developed to verify the suitability of the architecture
shown in Figure 1 for reconfigurable FPGA logic and compare the efficiency of
GF(3™) and GF(2™) AUs. The prototypes were coded in VHDL at a very low
level. The VHDL code was synthesized using Synopsis FPGA Compiler 3.7.1 and
the component placement and routing was done using Xilinx Design Manager
4.2.03i. The prototypes were synthesized and routed for the Xilinx XCV1000-8-
FG1156 and XC2VP20-7-FF1156 FPGAs. The XCV1000E-8-FG1156 prototype
allowed us to compare our AU implementations against the AU for GF(2™)
used in the EC processor (ECP) from [27], which is one of the fastest ECP
implemented in FPGA logic for EC defined over fields G F(2167). The XC2VP20-
7-FF1156 prototype allowed us to verify the speed of our AU for one of the newest
families of Xilinx FPGAs. Three implementation were developed which support
the fields GF(3%7), GF(2'%!), and GF(2%4!). The fields GF(3°7) and GF(2%4!)
are used in Weil and Tate pairing schemes for systems with comparable degrees
of security (see [10, 5,29]). The field GF (2'°!) offers security comparable to that
of GF(3°7) for cryptosystems based on the EC discrete logarithm problem.

6.1 GF(3™) Complexity Estimates

Table 3 shows the complexity estimates for the AU shown in Figure 1. The esti-
mates assume the use of optimum irreducible polynomials and give the register
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complexity in terms of the number of flip-flops. Note that the register estimates
do not account for registers used to reduce the critical path delay of a multi-
plier, a technique known as pipelining. This technique was used to reduce the
critical path delay of the prototype implementations. The complexity estimates

Table 3. GF(3™) AU complexity estimates

| Circuit | Area Complexity

LSE Mult.|(4mD + 2m + 6D) LUT + 6m + 2D + 4 FF
Cubic 4m LUT
Mux 2m LUT

AU (total)|(4mD + 8m + 6D) LUT + 6m + 2D + 4 FF

are based on the following assumptions:

1. GF(3) adders, subtracters, or multipliers require two LUTSs, including adders
that add weighted inputs, for example, adders that compute (a; * ¢) + (b; * d)
where ¢ and d are fixed constants. Also a 2:1 multiplexer requires one LUT.

2. From Table 2 the digit multiplication core and accumulator circuits require
mD GF(3) multipliers and mD GF(3) adders. This circuit stores the result
in two (m+ D —1)-bit registers. An m-bit register requires m flip-flops (FF's).

3. The estimates for the Aa”? mod p(«) circuit assume that the circuit contains
two m-bit multiplexers that select between the element A and the element
AaP" mod p(a). An m-bit multiplexer requires m LUTs. For programmable
optimum irreducible trinomials, the circuitry that generates Aa®? mod p(c)
requires 2D G'F'(3) multipliers and D adders (see Table 2). This circuit stores
the result in two m-bit registers and the coefficients of p(x) in two 2r-bit
registers (r = 3 for trinomials).

4. The coeflicients of B are fed in by two m-bit parallel in/serial out shift
registers. Each shift registers contains m 2:1 multiplexers and m registers.

5. The cubic circuit requires 2m GF(3) adders.

6. The complexity for the GF(2™) AU is done according to [26]. It is also
assumed that the GF(2™) AU contains an LSD multiplier and a squarer.

The estimates that we obtain from our models are very accurate when compared
to the actual measured complexities. This validates our models and assumptions.

6.2 Results

Table 5 presents the timings obtained for our three prototypes. We have tried to
implement our designs in such a way that we can make a meaningful comparison.
Thus, although, the clock rates are not exactly the same between the different
designs (this is due to the fact that the clock rate depends on the critical path of
the AU which is different for each circuit), they are not more than 10 % different.
The platforms are the same and we chose same digit sizes for both GF(2™) and
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Table 4. AU estimated vs. measured complexity for prototypes (D = 16)

Circuit Estimated Measured LUT Estimate
complexity complexity Error
(incl. pipelining (measured/est.)
registers & 1/0)
GF(2PD] 2366 LUT + 453 FF 2239 LUT + 1092 FF 54 %
(15.7m LUT + 3m FF) |(14.3m LUT + 7.2m FF)
GF(2**h| 3705 LUT + 723 FF 3591 LUT + 1722 FF 31 %
(14.9m LUT + 3m FF) |(15.4m LUT + 7.1m FF)
GF(3°")| 7080 LUT + 618 FF 7122 LUT + 2790 FF 1.0 %
(73.0m LUT + 6.4m FF)|(73.4m LUT + 7.2m FF)

GF(3™) architectures. The results make sense, for the same digit size (D = 16)
we obtain that the GF(3°7) design is about twice as big as the GF(22*!) design
and more than 3 times the size of the GF(2!°!) AU. This is offset by the gain
in performance. At similar clock rates the GF(3%7) design is 2.7 times faster
than the corresponding GF(2?*!) AU and 1.4 times faster than the GF(21°!)
one. It is clear that by using more hardware resources for GF(3°7) we achieve

Table 5. Comparison of multiplication time for GF(2'*'),GF(22*!), and GF(3°") pro-
totypes (D = 16) and the AU from [29]

Circuit |Time for optimized mult. Mult. time for prototypes
[29] XCV1000-8-FG1156] XC2VP20-7-FF1156
[29](in usecs) (in usecs) (in usecs)
GF(2™h) N/A 0.139 (@ 71.7 MHz)[0.100 (@ 100.2 MHz)
GF (2N  37.32 (@20 MHz) |0.261 (@ 61.3 MHz)| 0.150 (@ 107 MHz)
GF(377) 50.68 (@ 20 MHz) 0.097 (@ 72 MHz) | 0.074 (@ 94.4 MHz)

better performance than characteristic two fields. In particular, by choosing the
same digit size for both fields, we implicitly process twice as many bits of the
multiplier in GF(3°7) as in the GF(2™) case (remember that the E in LSDE
refers to elements of GF(p) and not bits as in the GF(2™) case). Table 5 also
includes the results from [29]. We don’t think it is possible to make a meaningful
comparison, other than point out that by coding directly in VHDL, one can
achieve huge improvements in performance of FPGA based implementations.

7 Conclusions

In this paper, we have generalized the finite field multipliers of [33] to the odd
characteristic case. We have also presented multiplication algorithms for both
serial and digit-based architectures. Finally, we have presented a general frame-
work to choose irreducible polynomials that reduce the computation of the mod-
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ulo reduction operation. More importantly, we have shown that it is possible to
achieve considerable performance from FPGA implementations of non-binary
finite fields. However, from our discussion in the previous section, we conclude
that fields of characteristic 2 can not be surpassed by other fields if one considers
both area and time performance measures.
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A Lists of Irreducible Polynomials over GF'(3)

Table 6. Irreducible trinomials of the form ™ + x* + 2 over GF(3), 2 < m < 255

m t m t m t m t m t m t m t m t m t m t m t
2 1 22 5 43 26 71 20 93 70 117 52 143 108 167 92 187 8 211 122 238 5
3 2 23 8 44 3 72 28 95 48 119 2 144 56 168 28 188 11 214 65 239 24
4 1 24 4 45 28 73 30 96 16 120 4 145 24 169 24 191 116 215 36 240 8
5 4 25 6 46 5 76 9 97 12 121 40 147 8 170 43 192 32 216 4 241 88
6 1 26 7 47 32 77 16 99 74 124 25 148 3 171 20 193 12 217 132 242 115
T 2 27 20 48 8 78 13 100 25 125 52 150 73 172 19 194 55 219 26 243 122
8 2 28 2 51 50 79 26 101 70 126 49 151 2 173 166 195 26 220 15 244 31
9 4 29 4 52 7 80 2 102 25 127 8 152 18 174 73 196 79 222 89 245 148
11 2 30 1 53 22 81 40 103 50 128 6 153 94 176 12 198 29 224 12 246 13
12 2 31 20 54 1 83 32 104 5 131 48 155 12 177 52 199 164 225 16 247 122
13 4 32 5 55 26 84 14 107 32 133 88 156 26 178 11 200 3 227 68 248 50
14 1 33 28 56 3 85 16 108 2 134 61 157 22 179 104 201 88 228 14 249 76
15 2 35 2 59 20 86 13 109 88 135 44 158 61 180 38 203 8 229 72 251 26
16 4 36 14 60 2 87 26 111 2 136 57 159 32 181 40 204 50 230 73 252 98
17 16 37 6 61 30 88 6 112 6 137 136 160 4 182 25 205 78 232 30 253 12
18 7 39 26 63 26 89 64 113 70 139 80 162 19 183 2 206 61 234 91 254 73
19 2 40 1 64 3 90 19 114 7 140 59 163 80 184 20 208 10 235 26 255 26
20 5 41 40 67 2 91 74 115 32 141 64 164 15 185 64 209 40 236 9
6 7

211 42 69 52 92 10 116 15 142 65 165 22 186 47 210 7 237 70

Table 7. Irreducible trinomials of the form ™ + 2z* + 1 over GF(3), 3 < m < 255

m t m t m t m t m t m t m t m t m t m t m t
3 1 25 3 46 6 71 20 94 30 119 2 145 24 170 32 194 24 222 4 249 59
5 1 26 2 47 15 73 1 95 47 121 1 146 2 171 20 195 26 225 16 250 104
6 2 27 7 50 6 74 12 97 12 122 14 147 8 173 7 198 38 226 38 251 9
T 2 29 4 51 1 77 16 99 19 125 52 151 2 174 52 199 35 227 11 253 7
9 4 30 4 53 13 78 14 101 31 126 52 153 59 177 52 201 88 229 72 254 16
10 2 31 5 54 14 79 26 102 2 127 8 154 32 178 26 202 62 230 64 255 26
11 2 33 5 55 11 81 40 103 47 131 27 155 12 179 59 203 3 234 104
131 34 2 58 8 82 2 106 26 133 15 157 22 181 37 205 9 235 26
14 4 35 2 59 17 83 27 107 3 134 4 158 52 182 34 206 94 237 70
15 2 37 6 61 7 85 16 109 9 135 44 159 32 183 2 209 40 238 4
17 1 38 4 62 10 86 34 110 22 137 1 162 80 185 64 211 89 239 5
18 8 39 7 63 26 87 26 111 2 138 34 163 59 186 46 214 6 241 88
19 2 41 1 66 10 89 13 113 19 139 59 165 22 187 8 215 36 242 2
21 5 42 10 67 2 90 34 115 32 141 5 166 54 190 94 217 85 243 121
22 4 43 17 69 17 91 17 117 52 142 40 167 71 191 71 218 18 245 97
23 3 45 17 70 4 93 23 118 34 143 35 169 24 193 12 219 25 247 122

Table 8. Irreducible trinomials of the form x™ + 2x* + 2 over GF(3), 2 < m < 255

41
42

67 11 91 17 115 83 141 5 164 15 185 121 209 49 236 9
69 17 92 10 116 15 142 65 165 77 186 47 210 7 237 167

m t m t m t m t m t m t m t m t m t m t m t
2 1 22 5 43 17 71 51 93 23 117 65 143 35 167 71 187 65 211 89 238 5
3 1 23 3 44 3 72 28 95 47 119 3 144 56 168 28 188 11 214 65 239 5
4 1 24 4 45 17 73 1 96 16 120 4 145 73 169 37 191 71 215 59 240 8
5 1 25 3 46 5 76 9 97 81 121 1 147 43 170 43 192 32 216 4 241 117
6 1 26 7 47 15 77 25 99 19 124 25 148 3 171 151 193 81 217 85 242 115
7 5 27 7 48 8 78 13 100 25 125 73 150 73 172 19 194 55 219 25 243 121
8 2 28 2 51 1 79 53 101 31 126 49 151 125 173 7 195 49 220 15 244 31
9 5 29 25 52 7 80 2 102 25 127 119 152 18 174 73 196 79 222 89 245 97
11 3 30 1 53 13 81 41 103 47 128 6 153 59 176 12 198 29 224 12 246 13
12 2 31 5 54 1 83 27 104 5 131 27 155 129 177 83 199 35 225 209 247 125
13 1 32 5 55 11 84 14 107 3 133 15 156 26 178 11 200 3 227 11 248 50
14 1 33 5 56 3 85 31 108 2 134 61 157 69 179 59 201 113 228 14 249 59
15 7 35 17 59 17 86 13 109 9 135 91 158 61 180 38 203 3 229 79 251 9
16 4 36 14 60 2 87 37 111 13 136 57 159 127 181 37 204 50 230 73 252 98
17 1 37 13 61 7 88 6 112 6 137 1 160 4 182 25 205 9 232 30 253 7
8 7 39 7 63 37 89 13 113 19 139 59 162 19 183 181 206 61 234 91 254 73
19 11 40 1 64 3 90 19 114 7 140 59 163 59 184 20 208 10 235 83 255 229
5 1
5 7



